Hieff Clone® Plus Multi One Step Cloning Kit是一款简便、快速、高效的DNA定向克隆产品,该试剂盒可以将PCR产物定向克隆至任何载体的任何位点,可高效克隆50 bp-10 kb片段。将载体线性化,并在插入片段正、反向PCR引物5’端引入15-25 bp的线性化载体末端同源序列,使得插入片段PCR产物5’和3’末端分别带有与线性化载体两末端对应的完全一致的序列。PCR产物和线性化载体在重组酶的作用下,仅需50℃反应20 min即可进行转化,完成定向克隆。克隆阳性率可达95%以上。
试剂盒中2×Hieff Clone® MultiS Enzyme Premix预混了重组酶和重组反应所需缓冲液,并添加了独特的重组增强因子,可显著提高重组克隆效率。使用该试剂盒,可以一次实现多至5个片段的顺序拼接克隆。
- 多至5个片段的克隆
冰袋运输。-25~-15℃保存,有效期1年。
[1] Zhang H, Shao S, Zeng Y, et al. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat Cell Biol. 2022;24(3):340-352. doi:10.1038/s41556-022-00846-7(IF:28.824)
[2] Qiao HH, Wang F, Xu RG, et al. An efficient and multiple target transgenic RNAi technique with low toxicity in Drosophila. Nat Commun. 2018;9(1):4160. Published 2018 Oct 8. doi:10.1038/s41467-018-06537-y(IF:12.353)
[3] Yao J, He Y, Su N, et al. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nat Commun. 2020;11(1):1515. Published 2020 Mar 23. doi:10.1038/s41467-020-14918-5(IF:12.121)
[4] Chen W, Yao J, Meng J, et al. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Nat Commun. 2019;10(1):960. Published 2019 Feb 27. doi:10.1038/s41467-019-08781-2(IF:11.878)
[5] Sun L, Yan Y, Lv H, et al. Rapamycin targets STAT3 and impacts c-Myc to suppress tumor growth. Cell Chem Biol. 2022;29(3):373-385.e6. doi:10.1016/j.chembiol.2021.10.006(IF:8.116)
[6] Liang C, Zhang X, Wu J, et al. Dynamic control of toxic natural product biosynthesis by an artificial regulatory circuit. Metab Eng. 2020;57:239-246. doi:10.1016/j.ymben.2019.12.002(IF:7.808)
[7] Wei W, Zhang P, Shang Y, Zhou Y, Ye BC. Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose. Bioresour Technol. 2020;314:123726. doi:10.1016/j.biortech.2020.123726(IF:7.539)
[8] Ma F, Yang X, Shi Z, Miao X. Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. New Phytol. 2020;225(1):474-487. doi:10.1111/nph.16111(IF:7.299)
[9] Guo M, Wu F, Zhang Z, et al. Characterization of Rabbit Nucleotide-Binding Oligomerization Domain 1 (NOD1) and the Role of NOD1 Signaling Pathway during Bacterial Infection. Front Immunol. 2017;8:1278. Published 2017 Oct 10. doi:10.3389/fimmu.2017.01278(IF:6.429)
[10] Zou G, Ren J, Wu D, et al. Characterization and Heterologous Expression of UDP-Glucose 4-Epimerase From a Hericium erinaceus Mutant with High Polysaccharide Production. Front Bioeng Biotechnol. 2021;9:796278. Published 2021 Nov 25. doi:10.3389/fbioe.2021.796278(IF:5.890)
[11] Ren CY, Liu Y, Wei WP, Dai J, Ye BC. Reconstruction of Secondary Metabolic Pathway to Synthesize Novel Metabolite in Saccharopolyspora erythraea. Front Bioeng Biotechnol. 2021;9:628569. Published 2021 Jul 2. doi:10.3389/fbioe.2021.628569(IF:5.890)
[12] Li N, Hong T, Li R, et al. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research. Front Immunol. 2016;7:377. Published 2016 Sep 21. doi:10.3389/fimmu.2016.00377(IF:5.695)
[13] Guo L, Yang W, Huang Q, et al. Selenocysteine-Specific Mass Spectrometry Reveals Tissue-Distinct Selenoproteomes and Candidate Selenoproteins. Cell Chem Biol. 2018;25(11):1380-1388.e4. doi:10.1016/j.chembiol.2018.08.006(IF:5.592)
[14] Liu Y, Ren CY, Wei WP, You D, Yin BC, Ye BC. A CRISPR-Cas9 Strategy for Activating the Saccharopolyspora erythraea Erythromycin Biosynthetic Gene Cluster with Knock-in Bidirectional Promoters. ACS Synth Biol. 2019;8(5):1134-1143. doi:10.1021/acssynbio.9b00024(IF:5.571)
[15] Liu Y, Wei WP, Ye BC. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea. ACS Synth Biol. 2018;7(5):1338-1348. doi:10.1021/acssynbio.7b00448(IF:5.316)
[16] Pan P, Wang X, Chen Y, et al. Effect of Hcp Iron Ion Regulation on the Interaction Between Acinetobacter baumannii With Human Pulmonary Alveolar Epithelial Cells and Biofilm Formation. Front Cell Infect Microbiol. 2022;12:761604. Published 2022 Feb 23. doi:10.3389/fcimb.2022.761604(IF:5.293)
[17] Li S, Liang C, Liu G, Jin JM, Tao Y, Tang SY. De Novo Biosynthesis of Chlorogenic Acid Using an Artificial Microbial Community. J Agric Food Chem. 2021;69(9):2816-2825. doi:10.1021/acs.jafc.0c07588(IF:5.279)
[18] Chai S, Zhu Z, Tian E, et al. Building a Versatile Protein Production Platform Using Engineered Trichoderma reesei. ACS Synth Biol. 2022;11(1):486-496. doi:10.1021/acssynbio.1c00570(IF:5.110)
[19] Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol. 2021;105(2):695-706. doi:10.1007/s00253-020-11044-6(IF:4.813)
[20] Xu X, Xiang T, Song S, et al. Secretory expression and purification of recombinant PLA2R epitopes for the detection of anti-PLA2R autoantibody in serum. Analyst. 2022;147(5):965-974. Published 2022 Feb 28. doi:10.1039/d2an00094f(IF:4.616)
[21] Gao Y, Chen N, Zhang X, et al. Juvenile Hormone Membrane Signaling Enhances its Intracellular Signaling Through Phosphorylation of Met and Hsp83. Front Physiol. 2022;13:872889. Published 2022 Apr 27. doi:10.3389/fphys.2022.872889(IF:4.566)
[22] Shang Y, Wei W, Zhang P, Ye BC. Engineering Yarrowia lipolytica for Enhanced Production of Arbutin. J Agric Food Chem. 2020;68(5):1364-1372. doi:10.1021/acs.jafc.9b07151(IF:4.192)
[23] Wang X, Wang R, Kang Q, Bai L. The Antitumor Agent Ansamitocin P-3 Binds to Cell Division Protein FtsZ in Actinosynnema pretiosum. Biomolecules. 2020;10(5):699. Published 2020 Apr 30. doi:10.3390/biom10050699(IF:4.082)
[24] Zhu P, Li Q, Azad SM, et al. Fungal Gene Mutation Analysis Elucidating Photoselective Enhancement of UV-C Disinfection Efficiency Toward Spoilage Agents on Fruit Surface. Front Microbiol. 2018;9:1141. Published 2018 Jun 12. doi:10.3389/fmicb.2018.01141(IF:4.019)
[25] Xu X, Yang J, Harvey-Samuel T, et al. Identification and characterization of the vasa gene in the diamondback moth, Plutella xylostella. Insect Biochem Mol Biol. 2020;122:103371. doi:10.1016/j.ibmb.2020.103371(IF:3.827)
[26] Zhang H, Song X, Li T, et al. DDX1 from Cherry valley duck mediates signaling pathways and anti-NDRV activity. Vet Res. 2021;52(1):9. Published 2021 Jan 20. doi:10.1186/s13567-020-00889-4(IF:3.699)
[27] Pan Q, Tong Y, Han YJ, Ye BC. Two amino acids missing of MtrA resulted in increased erythromycin level and altered phenotypes in Saccharopolyspora erythraea. Appl Microbiol Biotechnol. 2019;103(11):4539-4548. doi:10.1007/s00253-019-09825-9(IF:3.670)
[28] Yi J, Zhang D, Cheng Y, Tan J, Luo Y. The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt. Appl Microbiol Biotechnol. 2019;103(23-24):9643-9657. doi:10.1007/s00253-019-10162-0(IF:3.670)
[29] Shan Y, Guo D, Gu Q, et al. Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains. Appl Microbiol Biotechnol. 2020;104(2):817-831. doi:10.1007/s00253-019-10131-7(IF:3.670)
[30] Wang X, Ning X, Zhao Q, Kang Q, Bai L. Improved PKS Gene Expression With Strong Endogenous Promoter Resulted in Geldanamycin Yield Increase. Biotechnol J. 2017;12(11):10.1002/biot.201700321. doi:10.1002/biot.201700321(IF:3.649)
[31] Li CL, Xue DX, Wang YH, Xie ZP, Staehelin C. A method for functional testing constitutive and ligand-induced interactions of lysin motif receptor proteins. Plant Methods. 2020;16:3. Published 2020 Jan 16. doi:10.1186/s13007-020-0551-4(IF:3.610)
[32] Guo M, Li R, Xiao Q, et al. Protective Role of Rabbit Nucleotide-Binding Oligomerization Domain-2 (NOD2)-Mediated Signaling Pathway in Resistance to Enterohemorrhagic Escherichia coli Infection. Front Cell Infect Microbiol. 2018;8:220. Published 2018 Jun 26. doi:10.3389/fcimb.2018.00220(IF:3.520)
[33] Wei M, Zhu Z, Wu J, Wang Y, Geng J, Qin ZH. DRAM1 deficiency affects the organization and function of the Golgi apparatus. Cell Signal. 2019;63:109375. doi:10.1016/j.cellsig.2019.109375(IF:3.388)
[34] Hou X, Liu G, Zhang H, et al. High-mobility group box 1 protein (HMGB1) from Cherry Valley duck mediates signaling pathways and antiviral activity. Vet Res. 2020;51(1):12. Published 2020 Feb 18. doi:10.1186/s13567-020-00742-8(IF:3.357)
[35] Deng H, Xu X, Hu L, et al. A janus kinase from Scylla paramamosain activates JAK/STAT signaling pathway to restrain mud crab reovirus. Fish Shellfish Immunol. 2019;90:275-287. doi:10.1016/j.fsi.2019.03.056(IF:3.298)
[36] Wang M, Yan J, Zhu L, et al. The Establishment of Infectious Clone and Single Round Infectious Particles for Coxsackievirus A10. Virol Sin. 2020;35(4):426-435. doi:10.1007/s12250-020-00198-2(IF:3.242)
[37] Guo M, Zhang C, Zhang C, Zhang X, Wu Y. Functional characterization of NLRX1 in rabbit during enterohemorrhagic Escherichia coli infection. Dev Comp Immunol. 2020;106:103612. doi:10.1016/j.dci.2020.103612(IF:3.192)
[38] Mao D, Jia Y, Peng P, et al. Enhanced Efficiency of flySAM by Optimization of sgRNA Parameters in Drosophila. G3 (Bethesda). 2020;10(12):4483-4488. Published 2020 Dec 3. doi:10.1534/g3.120.401614(IF:2.781)