产品描述
由于死细胞缺乏酯酶,Calcein, AM仅用于对活细胞的细胞生存能力测试和短期标记。作为核染色染料的碘化丙啶不能穿过活细胞的细胞膜,它穿过死细胞膜的无序区域而到达细胞核,并嵌入细胞的DNA双螺旋从而产生红色荧光(激发:535 nm,发射:617 nm),因此PI仅对死细胞染色。由于Calcein和PI-DNA都可被490 nm激发,因此可用荧光显微镜同时观察活细胞和死细胞。而用545 nm激发,仅可观察到死细胞。根据以上特点,Calcein, AM和PI经常被结合用来作为活细胞和死细胞的双重染色。由于不同细胞系的最佳染色条件不同,我们建议个别确定 Calcein, AM 和 PI的合适浓度。
本品为粉末形式提供的Calcein-AM,超纯级别(≥95%),可与碘化丙啶(PI)(Cat No. 40710ES03)联合使用,用于活细胞和死细胞的同时检测。或者直接购买翌圣提供的Calcein-AM/PI活细胞/死细胞双染试剂盒(Cat No. 40747ES76)。
产品性质
中文名称(Chinese synonym) |
3'-O-乙酰胺-2',7'-二(羧乙基)-4或5-羧基荧光素,二乙酰甲酯;钙黄绿素乙酰甲酯; |
英文名称(English synonym) |
3',6'-Di(O-acetyl)-4',5'-bis[N,N-bis(carboxymethyl)aminomethyl]fluorescein, tetraacetoxymethyl ester |
CAS号( CAS NO) |
148504-34-1 |
分子式(Formula) |
C46H46N2O23 |
分子量(Mol. Wt.) |
994.86 |
纯度(Purity) |
≥95%(HPLC) |
Ex/ Em(nm) |
490/515 |
结构式 |
运输与保存方法
冰袋(wet ice)运输。-20℃干燥保存,避免直接暴露于强光下,有效期一年。
注意事项
1)对于微量试剂,开封前,请稍微离心一下,以保证粉末落入管底。
2)由于Calcein-AM对湿度非常敏感,本粉末保存的过程中一定要保持干燥。对于配制好的Calcein-AM储存液需要分装冻存,且必须紧紧密封盖子,干燥保存。Calcein-AM工作液必须现配现用。
3)为了您的安全和健康,请穿实验服并戴一次性手套操作。
4)本产品仅作科研用途!
使用方法
1. 储存液的配制
本品是以粉末形式提供的,根据工作液的浓度将其配制成1000×的储存液,储存液配制范围可为1~50 mM。例如使用的工作液为5 μM,那么可配制5 mM的储存液,也就是向50μg Calcein, AM(Mw:994.86)内加入10 μL 细胞培养级别的DMSO(CAS NO. 60313ES60)即可得到所需浓度的储存液。
2. 染色步骤
对于大部分细胞,钙黄绿素Calcein, AM的工作液浓度为2-5 μM。由于不同细胞系的最佳染色条件不同,初次实验建议做梯度实验,以确定 Calcein-AM的最适浓度。梯度筛选的原则为使用最低的探针浓度得到最好的荧光结果。
1)使用时,取一管适量的Calcein, AM储存液(1000×),用PBS(或Hanks和Hepes)缓冲液将其稀释成相应浓度的染色工作液。
【注】:有时候可添加一定量的非离子表面活性剂如Pluronic F127(Cat No. 60318ES60)到Calcein AM储存液内来增强其水溶性。制备染色工作液前,取一管需要用的Calcein AM储存液内加入等体积的20% Pluronic F127,使Pluronic F127的终浓度为0.02%。含Pluronic F127的Calcein AM溶液不可长期保存,现配现用。
2)对于贴壁细胞,先用胰酶-EDTA消化细胞,离心收集细胞(1000 rpm,3 min)。对于悬浮细胞,直接离心收集细胞。
3)去上清,用PBS(或者其他缓冲液)充分清洗细胞2~3次,以充分去除残留的酯酶活性。
4)用1/10细胞培养基体积的Calcein, AM染色工作液重悬细胞,37℃培养细胞15~30分钟。
【注】:如果细胞本身含有有机阴离子转运体,需加入丙磺舒(probenecid,1-2.5mM)或者苯磺唑酮(sulfinpyrazone,0.1-0.25mM)到孵育体系内以降低去酯化染料calcein泄露到胞外。
5)用PBS(或者其他缓冲液)洗涤细胞两次去除多余的染料。
【注】:如有必要,使用含有阴离子转运抑制剂的缓冲液来进行细胞清洗】
6)用含490 nm激发波长,515 nm发射波长的滤光片的荧光显微镜观察细胞。
相关产品
40719ES60 |
Calcein, AM, Ultrapure Grade 钙黄绿素,超纯级 |
2×50 μg |
40747ES76 |
Calcein-AM/PI Double Stain Kit Calcein-AM/PI活细胞/死细胞双染试剂盒 |
500 T |
40747ES80 |
Calcein-AM/PI Double Stain Kit Calcein-AM/PI活细胞/死细胞双染试剂盒 |
1000 T |
60318ES60 |
Pluronic® F-127 |
100 mg |
60313ES60 |
DMSO 二甲基亚砜,细胞培养级 |
100 mL |
HB221102
Q:这些探针染细胞,有没有细胞特异性?会不会 293 细胞不好染,MSC 好染?
A:由于这些染料是亲脂性染料,是通过插入到脂质膜中进而被激光激发观察,对于动植物细胞没有特异性。
Q:这些探针荧光探针装载完多久后观察?
A:为减少各种可能的误差,尽量缩短探针装载后到仪器测定所用的时间(刺激时间除外)。
Q:这些探针染色细胞后,对细胞有毒性吗?
A:荧光探针类产品对活细胞都会有一定的毒性,因此建议在染色处理完成后应尽快完成检测和观察。
Q:为什么染色后发现荧光颜色较浅,应怎么操作进行改进?
A:可以尝试增加染色的时间和浓度。
Q:要看几个小时过程中活细胞的形态变化,应该怎么选?
A:通常使用亲脂性花青染料,如 DiI,DiO,DiD 或 DiR。
[1] Liu Q, Sheng Z, Cheng C, et al. Anesthetic Propofol Promotes Tumor Metastasis in Lungs via GABAA R-Dependent TRIM21 Modulation of Src Expression. Adv Sci (Weinh). 2021;8(18):e2102079. doi:10.1002/advs.202102079(IF:16.806)
[2] Yu H, Fan J, Shehla N, et al. Biomimetic Hybrid Membrane-Coated Xuetongsu Assisted with Laser Irradiation for Efficient Rheumatoid Arthritis Therapy [published online ahead of print, 2021 Dec 29]. ACS Nano. 2021;10.1021/acsnano.1c07556. doi:10.1021/acsnano.1c07556(IF:15.881)
[3] Zhang R, Deng L, Guo J, et al. Solvent Mediating the in Situ Self-Assembly of Polysaccharides for 3D Printing Biomimetic Tissue Scaffolds [published online ahead of print, 2021 Oct 29]. ACS Nano. 2021;10.1021/acsnano.1c05956. doi:10.1021/acsnano.1c05956(IF:15.881)
[4] Xu M, Hu K, Liu Y, et al. Systemic metastasis-targeted nanotherapeutic reinforces tumor surgical resection and chemotherapy. Nat Commun. 2021;12(1):3187. Published 2021 May 27. doi:10.1038/s41467-021-23466-5(IF:14.919)
[5] Xu Z, Guo C, Ye Q, et al. Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization. Nat Commun. 2021;12(1):6310. Published 2021 Nov 2. doi:10.1038/s41467-021-26697-8(IF:14.919)
[6] Huang F, Chen M, Zhou Z, Duan R, Xia F, Willner I. Spatiotemporal patterning of photoresponsive DNA-based hydrogels to tune local cell responses. Nat Commun. 2021;12(1):2364. Published 2021 Apr 22. doi:10.1038/s41467-021-22645-8(IF:14.919)
[7] Guo X, Liu F, Deng J, et al. Electron-Accepting Micelles Deplete Reduced Nicotinamide Adenine Dinucleotide Phosphate and Impair Two Antioxidant Cascades for Ferroptosis-Induced Tumor Eradication. ACS Nano. 2020;14(11):14715-14730. doi:10.1021/acsnano.0c00764(IF:14.588)
[8] Wang D, Dong H, Li M, et al. Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. ACS Nano. 2018;12(6):5241-5252. doi:10.1021/acsnano.7b08355(IF:13.709)
[9] Duo Y, Luo G, Li Z, et al. Photothermal and Enhanced Photocatalytic Therapies Conduce to Synergistic Anticancer Phototherapy with Biodegradable Titanium Diselenide Nanosheets. Small. 2021;17(40):e2103239. doi:10.1002/smll.202103239(IF:13.281)
[10] Zhao Q, Wang J, Yin C, et al. Near-Infrared Light-Sensitive Nano Neuro-Immune Blocker Capsule Relieves Pain and Enhances the Innate Immune Response for Necrotizing Infection. Nano Lett. 2019;19(9):5904-5914. doi:10.1021/acs.nanolett.9b01459(IF:12.279)
[11] Zhang Z, Liu Q, Tan J, et al. Coating with flexible DNA network enhanced T-cell activation and tumor killing for adoptive cell therapy. Acta Pharm Sin B. 2021;11(7):1965-1977. doi:10.1016/j.apsb.2021.04.002(IF:11.614)
[12] Li A, Zhang T, Huang T, et al. Iron Oxide Nanoparticles Promote Cx43-Overexpression of Mesenchymal Stem Cells for Efficient Suicide Gene Therapy during Glioma Treatment. Theranostics. 2021;11(17):8254-8269. Published 2021 Jul 13. doi:10.7150/thno.60160(IF:11.556)
[13] Liao Z, Chen Y, Duan C, et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 2021;11(1):268-291. Published 2021 Jan 1. doi:10.7150/thno.47021(IF:11.556)
[14] Dang W, Chen WC, Ju E, et al. 3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic therapy for efficiently inhibiting postoperative tumor recurrence. J Nanobiotechnology. 2022;20(1):266. Published 2022 Jun 7. doi:10.1186/s12951-022-01454-1(IF:10.435)
[15] Zhang Y, Dong Y, Fu H, et al. Multifunctional tumor-targeted PLGA nanoparticles delivering Pt(IV)/siBIRC5 for US/MRI imaging and overcoming ovarian cancer resistance. Biomaterials. 2021;269:120478. doi:10.1016/j.biomaterials.2020.120478(IF:10.317)
[16] Liu B, Wang W, Fan J, et al. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials. 2019;217:119301. doi:10.1016/j.biomaterials.2019.119301(IF:10.273)
[17] Xu Z, Yuan L, Liu Q, et al. Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydr Polym. 2022;285:119237. doi:10.1016/j.carbpol.2022.119237(IF:9.381)
[18] He H, Sun C, Weng Y, et al. Catechol modification of non-woven chitosan gauze for enhanced hemostatic efficacy. Carbohydr Polym. 2022;286:119319. doi:10.1016/j.carbpol.2022.119319(IF:9.381)
[19] Li L, Gong Y, Tang J, et al. ZBTB28 inhibits breast cancer by activating IFNAR and dual blocking CD24 and CD47 to enhance macrophages phagocytosis. Cell Mol Life Sci. 2022;79(2):83. Published 2022 Jan 20. doi:10.1007/s00018-021-04124-x(IF:9.261)
[20] Wang S, Shen H, Mao Q, et al. Macrophage-Mediated Porous Magnetic Nanoparticles for Multimodal Imaging and Postoperative Photothermal Therapy of Gliomas. ACS Appl Mater Interfaces. 2021;13(48):56825-56837. doi:10.1021/acsami.1c12406(IF:9.229)
[21] Wu J, Zhu J, Wu Q, et al. Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization. ACS Appl Mater Interfaces. 2021;13(2):2230-2244. doi:10.1021/acsami.0c18388(IF:9.229)
[22] Gong D, Celi N, Zhang D, Cai J. Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery. ACS Appl Mater Interfaces. 2022;14(5):6320-6330. doi:10.1021/acsami.1c16859(IF:9.229)
[23] Zhu X, Chen Q, Xie L, et al. Iron ion and sulfasalazine-loaded polydopamine nanoparticles for Fenton reaction and glutathione peroxidase 4 inactivation for enhanced cancer ferrotherapy. Acta Biomater. 2022;145:210-221. doi:10.1016/j.actbio.2022.04.024(IF:8.947)
[24] Mai B, Jia M, Liu S, et al. Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing [published correction appears in ACS Appl Mater Interfaces. 2021 May 26;13(20):24341]. ACS Appl Mater Interfaces. 2020;12(9):10156-10169. doi:10.1021/acsami.0c00298(IF:8.758)
[25] Zhou Y, Zeng X, Li G, et al. Inactivation of endothelial adenosine A2A receptors protects mice from cerebral ischaemia-induced brain injury. Br J Pharmacol. 2019;176(13):2250-2263. doi:10.1111/bph.14673(IF:8.740)
[26] Shan B, Wang H, Li L, et al. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for in vivo photothermal tumor ablation in the second near-infrared biowindow. Theranostics. 2020;10(25):11656-11672. Published 2020 Sep 19. doi:10.7150/thno.51287(IF:8.579)
[27] Chen H, Cheng Y, Wang X, et al. 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics. 2020;10(26):12127-12143. Published 2020 Oct 26. doi:10.7150/thno.52450(IF:8.579)
[28] Wang X, Zheng X, Duan Y, Ma L, Gao C. Defined Substrate by Aptamer Modification with the Balanced Properties of Selective Capture and Stemness Maintenance of Mesenchymal Stem Cells. ACS Appl Mater Interfaces. 2019;11(16):15170-15180. doi:10.1021/acsami.9b03333(IF:8.456)
[29] Zhang H, Wang D, Zuo X, Gao C. UV-Responsive Multilayers with Multiple Functions for Biofilm Destruction and Tissue Regeneration. ACS Appl Mater Interfaces. 2019;11(19):17283-17293. doi:10.1021/acsami.9b04428(IF:8.456)
[30] Li J, Meng X, Deng J, et al. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery. ACS Appl Mater Interfaces. 2018;10(20):17117-17128. doi:10.1021/acsami.8b06299(IF:8.097)
[31] Huang H, Dong Y, Zhang Y, et al. GSH-sensitive Pt(IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer. Theranostics. 2019;9(4):1047-1065. Published 2019 Jan 30. doi:10.7150/thno.29820(IF:8.063)
[32] Hou L, Chen D, Hao L, et al. Transformable nanoparticles triggered by cancer-associated fibroblasts for improving drug permeability and efficacy in desmoplastic tumors. Nanoscale. 2019;11(42):20030-20044. doi:10.1039/c9nr06438a(IF:7.790)
[33] Kang Y, Li Z, Lu F, Su Z, Ji X, Zhang S. Synthesis of red/black phosphorus-based composite nanosheets with a Z-scheme heterostructure for high-performance cancer phototherapy. Nanoscale. 2022;14(3):766-779. Published 2022 Jan 20. doi:10.1039/d1nr07553e(IF:7.790)
[34] Tang K, Qin W, Wei R, et al. Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence. Pharmacol Res. 2022;179:106123. doi:10.1016/j.phrs.2022.106123(IF:7.658)
[35] Chai H, Qu H, He S, et al. Zedoarondiol inhibits atherosclerosis by regulating monocyte migration and adhesion via CXCL12/CXCR4 pathway [published online ahead of print, 2022 Jun 27]. Pharmacol Res. 2022;182:106328. doi:10.1016/j.phrs.2022.106328(IF:7.658)
[36] Hu W, Xu Z, Zhu S, et al. Small extracellular vesicle-mediated Hsp70 intercellular delivery enhances breast cancer adriamycin resistance. Free Radic Biol Med. 2021;164:85-95. doi:10.1016/j.freeradbiomed.2020.12.436(IF:7.376)
[37] Hong Z, Sun X, Sun X, et al. Enzyme-induced morphological transformation of drug carriers: Implications for cytotoxicity and the retention time of antitumor agents. Mater Sci Eng C Mater Biol Appl. 2021;129:112389. doi:10.1016/j.msec.2021.112389(IF:7.328)
[38] Yu L, Cai Y, Wang H, et al. Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater. 2020;112:75-86. doi:10.1016/j.actbio.2020.05.041(IF:7.242)
[39] Qi X, Su T, Zhang M, et al. Sustainable, flexible and biocompatible hydrogels derived from microbial polysaccharides with tailorable structures for tissue engineering. Carbohydr Polym. 2020;237:116160. doi:10.1016/j.carbpol.2020.116160(IF:7.182)
[40] Wu X, Dai H, Liu L, et al. Citrate reduced oxidative damage in stem cells by regulating cellular redox signaling pathways and represent a potential treatment for oxidative stress-induced diseases. Redox Biol. 2019;21:101057. doi:10.1016/j.redox.2018.11.015(IF:7.126)
[41] Duan Z, Tan L, Duan R, Chen M, Xia F, Huang F. Photoactivated Biosensing Process for Dictated ATP Detection in Single Living Cells. Anal Chem. 2021;93(33):11547-11556. doi:10.1021/acs.analchem.1c02049(IF:6.986)
[42] Cheng Y , Lu H , Yang F , Zhang Y , Dong H . Biodegradable FeWOx nanoparticles for CT/MR imaging-guided synergistic photothermal, photodynamic, and chemodynamic therapy. Nanoscale. 2021;13(5):3049-3060. doi:10.1039/d0nr07215j(IF:6.895)
[43] Yan P, Shu X, Zhong H, et al. A versatile nanoagent for multimodal imaging-guided photothermal and anti-inflammatory combination cancer therapy. Biomater Sci. 2021;9(14):5025-5034. doi:10.1039/d1bm00576f(IF:6.843)
[44] Xie Q, Liu Y, Long Y, et al. Hybrid-cell membrane-coated nanocomplex-loaded chikusetsusaponin IVa methyl ester for a combinational therapy against breast cancer assisted by Ce6. Biomater Sci. 2021;9(8):2991-3004. doi:10.1039/d0bm02211j(IF:6.843)
[45] Li X, Fu G, Zhang L, et al. Assay establishment and validation of a high-throughput organoid-based drug screening platform. Stem Cell Res Ther. 2022;13(1):219. Published 2022 May 26. doi:10.1186/s13287-022-02902-3(IF:6.832)
[46] Li S, Song C, Yang S, et al. Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation. Acta Biomater. 2019;94:253-267. doi:10.1016/j.actbio.2019.05.066(IF:6.638)
[47] Yi X, Dai J, Han Y, et al. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun Biol. 2018;1:202. Published 2018 Nov 21. doi:10.1038/s42003-018-0204-6(IF:6.268)
[48] Long Y , Wu X , Li Z , Fan J , Hu X , Liu B . PEGylated WS2 nanodrug system with erythrocyte membrane coating for chemo/photothermal therapy of cervical cancer. Biomater Sci. 2020;8(18):5088-5105. doi:10.1039/d0bm00972e(IF:6.183)
[49] Bao L, Hong FF, Li G, Hu G, Chen L. Improved Performance of Bacterial Nanocellulose Conduits by the Introduction of Silk Fibroin Nanoparticles and Heparin for Small-Caliber Vascular Graft Applications. Biomacromolecules. 2021;22(2):353-364. doi:10.1021/acs.biomac.0c01211(IF:6.092)
[50] Chen Z, Zhang H, Bai Y, et al. Single cell transcriptomic analysis identifies novel vascular smooth muscle subsets under high hydrostatic pressure. Sci China Life Sci. 2021;64(10):1677-1690. doi:10.1007/s11427-020-1852-x(IF:6.038)
[51] Bao S, Zheng H, Chen C, et al. Nfe2l1 deficiency mitigates streptozotocin-induced pancreatic β-cell destruction and development of diabetes in male mice. Food Chem Toxicol. 2021;158:112633. doi:10.1016/j.fct.2021.112633(IF:6.025)
[52] Daniyal M, Liu Y, Yang Y, et al. Anti-gastric cancer activity and mechanism of natural compound "Heilaohulignan C" isolated from Kadsura coccinea. Phytother Res. 2021;35(7):3977-3987. doi:10.1002/ptr.7114(IF:5.882)
[53] Luan X, Sun M, Zhao X, Wang J, Han Y, Gao Y. Bisimidazolium Salt Glycosyltransferase Inhibitors Suppress Hepatocellular Carcinoma Progression In Vitro and In Vivo. Pharmaceuticals (Basel). 2022;15(6):716. Published 2022 Jun 5. doi:10.3390/ph15060716(IF:5.863)
[54] Luo L, Zeng F, Xie J, et al. A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer. J Mater Chem B. 2020;8(18):4080-4092. doi:10.1039/c9tb02937k(IF:5.344)
[55] Bian W, Pan Z, Wang Y, et al. A mitochondria-targeted thiazoleorange-based photothermal agent for enhanced photothermal therapy for tumors. Bioorg Chem. 2021;113:104954. doi:10.1016/j.bioorg.2021.104954(IF:5.275)
[56] Gong Z, Liu X, Zhou B, et al. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Colloids Surf B Biointerfaces. 2021;202:111673. doi:10.1016/j.colsurfb.2021.111673(IF:5.268)
[57] Ding X, Liu G, Xu B, et al. Human GV oocytes generated by mitotically active germ cells obtained from follicular aspirates. Sci Rep. 2016;6:28218. Published 2016 Jun 30. doi:10.1038/srep28218(IF:5.228)
[58] Zhou X, Liu P, Nie W, et al. Incorporation of dexamethasone-loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity. Int J Biol Macromol. 2020;149:116-126. doi:10.1016/j.ijbiomac.2020.01.237(IF:5.162)
[59] Xu B, Zhou M, Wang J, et al. Increased AIF-1-mediated TNF-α expression during implantation phase in IVF cycles with GnRH antagonist protocol. Hum Reprod. 2018;33(7):1270-1280. doi:10.1093/humrep/dey119(IF:4.990)
[60] Ge Q, Wang X, Luo Y, Zheng X, Ma L. E7-Modified Substrates to Promote Adhesion and Maintain Stemness of Mesenchymal Stem Cells. Macromol Biosci. 2021;21(4):e2000384. doi:10.1002/mabi.202000384(IF:4.979)
[61] Hua L, Qian H, Lei T, Zhang Y, Lei P, Hu Y. 3D-Printed Porous Tantalum Coated with Antitubercular Drugs Achieving Antibacterial Properties and Good Biocompatibility. Macromol Biosci. 2022;22(1):e2100338. doi:10.1002/mabi.202100338(IF:4.979)
[62] Du H, Tao L, Wang W, et al. Enhanced biocompatibility of poly(l‑lactide‑co‑epsilon‑caprolactone) electrospun vascular grafts via self-assembly modification. Mater Sci Eng C Mater Biol Appl. 2019;100:845-854. doi:10.1016/j.msec.2019.03.063(IF:4.959)
[63] Chen Y, Li R, Zhu Y, et al. Dihydroartemisinin Induces Growth Arrest and Overcomes Dexamethasone Resistance in Multiple Myeloma [published correction appears in Front Oncol. 2021 Jul 23;11:736373]. Front Oncol. 2020;10:767. Published 2020 May 15. doi:10.3389/fonc.2020.00767(IF:4.848)
[64] Liu Y , Li Q , Xiong X , Huang Y , Zhou Z . Mitochondria-targeting and cell-penetrating peptides-co-modified HPMA copolymers for enhancing therapeutic efficacy of α-tocopheryl succinate. J Mater Chem B. 2018;6(46):7674-7683. doi:10.1039/c8tb02621a(IF:4.776)
[65] Zhou X , Weng W , Chen B , et al. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J Mater Chem B. 2018;6(5):740-752. doi:10.1039/c7tb01246b(IF:4.776)
[66] Zheng X , Pan X , Pang Q , Shuai C , Ma L , Gao C . Selective capture of mesenchymal stem cells over fibroblasts and immune cells on E7-modified collagen substrates under flow circumstances. J Mater Chem B. 2018;6(1):165-173. doi:10.1039/c7tb02812a(IF:4.543)
[67] He J, Lin X, Meng F, et al. A Novel Small Molecular Prostaglandin Receptor EP4 Antagonist, L001, Suppresses Pancreatic Cancer Metastasis. Molecules. 2022;27(4):1209. Published 2022 Feb 11. doi:10.3390/molecules27041209(IF:4.412)
[68] Gong Z, Lao J, Gao F, et al. pH-Triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery. Colloids Surf B Biointerfaces. 2020;188:110811. doi:10.1016/j.colsurfb.2020.110811(IF:4.389)
[69] Wang W, Nie W, Liu D, et al. Macroporous nanofibrous vascular scaffold with improved biodegradability and smooth muscle cells infiltration prepared by dual phase separation technique. Int J Nanomedicine. 2018;13:7003-7018. Published 2018 Nov 1. doi:10.2147/IJN.S183463(IF:4.370)
[70] Yang Y, Gao J, Zhang Y, et al. Natural pyrethrins induce autophagy of HepG2 cells through the activation of AMPK/mTOR pathway. Environ Pollut. 2018;241:1091-1097. doi:10.1016/j.envpol.2018.06.049(IF:4.358)
[71] Wang Z, Long Y, Fan J, et al. Biosafety and biocompatibility assessment of Prussian blue nanoparticles in vitro and in vivo. Nanomedicine (Lond). 2020;15(27):2655-2670. doi:10.2217/nnm-2020-0191(IF:4.300)
[72] Qi X, Zhang M, Su T, et al. Biocompatible Hydrogels Based on Food Gums with Tunable Physicochemical Properties as Scaffolds for Cell Culture. J Agric Food Chem. 2020;68(12):3770-3778. doi:10.1021/acs.jafc.9b06120(IF:4.192)
[73] Hui Y, Tang T, Wang J, et al. Fusaricide is a Novel Iron Chelator that Induces Apoptosis through Activating Caspase-3. J Nat Prod. 2021;84(8):2094-2103. doi:10.1021/acs.jnatprod.0c01322(IF:4.050)
[74] Wang W, Liu D, Li D, et al. Nanofibrous vascular scaffold prepared from miscible polymer blend with heparin/stromal cell-derived factor-1 alpha for enhancing anticoagulation and endothelialization. Colloids Surf B Biointerfaces. 2019;181:963-972. doi:10.1016/j.colsurfb.2019.06.065(IF:3.973)
[75] Xu S, Cheng X, Wu L, et al. Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell Signal. 2020;75:109733. doi:10.1016/j.cellsig.2020.109733(IF:3.968)
[76] Kang X, Jiang L, Chen X, et al. Exosomes derived from hypoxic bone marrow mesenchymal stem cells rescue OGD-induced injury in neural cells by suppressing NLRP3 inflammasome-mediated pyroptosis. Exp Cell Res. 2021;405(1):112635. doi:10.1016/j.yexcr.2021.112635(IF:3.905)
[77] Zhang Q, Wu L, Liu S, et al. Moderating hypoxia and promoting immunogenic photodynamic therapy by HER-2 nanobody conjugate nanoparticles for ovarian cancer treatment. Nanotechnology. 2021;32(42):10.1088/1361-6528/ac07d1. Published 2021 Jul 27. doi:10.1088/1361-6528/ac07d1(IF:3.874)
[78] Chen Y, Cai S, Qiao X, et al. As-CATH1-6, novel cathelicidins with potent antimicrobial and immunomodulatory properties from Alligator sinensis, play pivotal roles in host antimicrobial immune responses. Biochem J. 2017;474(16):2861-2885. Published 2017 Aug 10. doi:10.1042/BCJ20170334(IF:3.797)
[79] Wang X, Xu S, Zhang L, et al. Vitamin C induces ferroptosis in anaplastic thyroid cancer cells by ferritinophagy activation. Biochem Biophys Res Commun. 2021;551:46-53. doi:10.1016/j.bbrc.2021.02.126(IF:3.575)
[80] Zhu X, Yao Y, Guo M, et al. Sevoflurane increases intracellular calcium to induce mitochondrial injury and neuroapoptosis. Toxicol Lett. 2021;336:11-20. doi:10.1016/j.toxlet.2020.11.002(IF:3.569)
[81] Shan K, Qiu J, Zhou R, et al. RNA-seq identifies long non-coding RNAs as potential therapeutic targets for human corneal endothelial dysfunction under oxidative stress. Exp Eye Res. 2021;213:108820. doi:10.1016/j.exer.2021.108820(IF:3.467)
[82] Chen C, Wang A, Zhang F, et al. The protective effect of fish-derived cathelicidins on bacterial infections in zebrafish, Danio rerio. Fish Shellfish Immunol. 2019;92:519-527. doi:10.1016/j.fsi.2019.06.029(IF:3.298)
[83] Song JX, An JR, Chen Q, et al. Liraglutide attenuates hepatic iron levels and ferroptosis in db/db mice. Bioengineered. 2022;13(4):8334-8348. doi:10.1080/21655979.2022.2051858(IF:3.269)
[84] Wu T, Tong M, Chu A, Wu K, Niu X, Zhang Z. PM2.5-Induced Programmed Myocardial Cell Death via mPTP Opening Results in Deteriorated Cardiac Function in HFpEF Mice. Cardiovasc Toxicol. 2022;22(8):746-762. doi:10.1007/s12012-022-09753-7(IF:3.239)
[85] Liu M, Yu P, Jiang H, et al. The Essential Role of Pin1 via NF-κB Signaling in Vascular Inflammation and Atherosclerosis in ApoE-/- Mice. Int J Mol Sci. 2017;18(3):644. Published 2017 Mar 16. doi:10.3390/ijms18030644(IF:3.226)
[86] Wu X, Dai H, Xu C, Liu L, Li S. Citric acid modification of a polymer exhibits antioxidant and anti-inflammatory properties in stem cells and tissues. J Biomed Mater Res A. 2019;107(11):2414-2424. doi:10.1002/jbm.a.36748(IF:3.221)
[87] Wang Y, Ouyang J, Luo X, et al. Identification and characterization of novel bi-functional cathelicidins from the black-spotted frog (Pelophylax nigromaculata) with both anti-infective and antioxidant activities. Dev Comp Immunol. 2021;116:103928. doi:10.1016/j.dci.2020.103928(IF:3.192)
[88] Yang Y, Tong C, Zhong J, Huang R, Tan W, Tan Z. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats. J Biomed Mater Res B Appl Biomater. 2018;106(5):1827-1841. doi:10.1002/jbm.b.33992(IF:3.189)
[89] Han Y, Li C, Cai Q, et al. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Biomed Mater. 2020;15(3):035022. Published 2020 Apr 30. doi:10.1088/1748-605X/ab56ca(IF:3.174)
[90] Guo Z, Qiao X, Cheng R, et al. As-CATH4 and 5, two vertebrate-derived natural host defense peptides, enhance the immuno-resistance efficiency against bacterial infections in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 2017;71:202-209. doi:10.1016/j.fsi.2017.10.015(IF:3.148)
[91] Qiao X, Yang H, Gao J, et al. Diversity, immunoregulatory action and structure-activity relationship of green sea turtle cathelicidins. Dev Comp Immunol. 2019;98:189-204. doi:10.1016/j.dci.2019.05.005(IF:3.119)
[92] Li X, Li G, Zhang K, Pei Z, Zhao S, Li J. Cu-loaded Brushite bone cements with good antibacterial activity and operability. J Biomed Mater Res B Appl Biomater. 2021;109(6):877-889. doi:10.1002/jbm.b.34752(IF:2.831)
[93] Zhu D, Chen C, Xia Y, Kong LY, Luo J. A Purified Resin Glycoside Fraction from Pharbitidis Semen Induces Paraptosis by Activating Chloride Intracellular Channel-1 in Human Colon Cancer Cells. Integr Cancer Ther. 2019;18:1534735418822120. doi:10.1177/1534735418822120(IF:2.634)
[94] Huang S, Xue S, Zhang Q, Chen J, Zhu W, Chang Q. Autophagy Induced by Trehalose Alleviates Apoptosis of Human Aortic Endothelial Cells After Cryopreservation [published online ahead of print, 2021 Sep 1]. Biopreserv Biobank. 2021;10.1089/bio.2021.0071. doi:10.1089/bio.2021.0071(IF:2.300)
[95] Han S, Lu J, Gao J, et al. Pyraclostrobin induced AMPK/mTOR pathways mediated autophagy in RAW264.7 macrophages. J Environ Sci Health B. 2021;56(9):793-800. doi:10.1080/03601234.2021.1956248(IF:1.990)
[96] Zhao B, Li R, Cheng G, et al. Role of hepcidin and iron metabolism in the onset of prostate cancer. Oncol Lett. 2018;15(6):9953-9958. doi:10.3892/ol.2018.8544(IF:1.664)