产品描述
产品组分
编号 |
组分 |
产品编号/规格 |
|
40747ES76 (500T) |
40747ES80 (1000T) |
||
40747-A |
Calcein-AM Solution (2 mM) |
50μL |
50μL×2 |
40747-B |
PI Solution(1.5 mM) |
150μL |
150μL×2 |
40747-C |
10×Assay Buffer |
50mL |
100mL |
冰袋运输;其中A组分和B组分需-20℃避光干燥保存,C组分-20℃保存,经常使用可放在4℃保存。一年有效。
使用方法
1. 工作液的配制
1.1 1×Assay Buffer(反应缓冲液)的配制
从低温冰箱内取出10×Assay Buffer,根据单次用量无菌条件取出适量,用去离子水(dH2O)做10倍稀释以得到1×Assay Buffer。
1.2 1×染色工作液的配制
1)先将低温保存的Calcein-AM溶液 (2 mM)和PI溶液(1.5 mM)回到室温20-30 min。
注意:第一次使用可对母液进行分装,以减少反复冻融次数。
2)取5 µL Calcein-AM溶液 (2 mM)和15µL PI溶液(1.5 mM)加入5 mL 1×Assay Buffer,充分混匀。此时得到Calcein-AM的工作液浓度为2 μM,PI的工作液浓度为4.5 μM。由于不同细胞系的最佳染色条件不同,初次实验建议做梯度实验,以确定 Calcein-AM和PI的最适浓度。梯度筛选的原则为使用最低的探针浓度得到最好的荧光结果。
注意:由于Calcein-AM的稳定性比较差,此染色工作液必须现配现用,并且在当天用完。
2. 染色步骤
2.1 对于贴壁细胞,先用细胞刮刀或者胰酶-EDTA消化细胞,之后离心收集细胞(1000 rpm,3 min)。
对于悬浮细胞,直接离心(1000 rpm,3 min)收集细胞。
2.2 去上清,用1×Assay Buffer充分清洗细胞2~3次,以充分去除残留的酯酶活性。
2.3 用1×Assay Buffer制备细胞悬液,使其密度为1×105~1×106细胞/mL。
2.4 取100 µL染色工作液加入200 µL细胞悬液内,混匀,37℃孵育15 min。
注意:如果需要,可延长孵育时间至30min。
2.5 荧光显微镜下使用490±10 nm激发滤片同时检测活细胞(黄绿色荧光)以及死细胞(红色荧光)。另外,使用545 nm的发射滤片仅能观察到死细胞。也可以直接在荧光酶标仪下使用合适的滤片进行检测。
注意:可以使用以下方法来优化得到两种荧光染料的最佳工作浓度。
a)用0.1%皂素或者0.1-0.5%地高辛孵育细胞10 min,或者用70%乙醇孵育细胞30 min,从而制备死细胞;
b)用0.1-10 µM的PI溶液进行死细胞染色,以得到仅仅对细胞核染色,而不会对细胞质染色的最佳工作浓度。
c)用0.1-10 µM的Calcein-AM进行死细胞染色,以得到不会对细胞质染色的最佳工作浓度。然后用此浓度进行活细胞染色,去观察是否活细胞能被染色。
注意事项
1)由于Calcein-AM对湿度非常敏感,若是Calcein-AM溶液每次取完需要量后,必须紧紧密封盖子。建议根据单次用量,分装密封保存。Calcein-AM工作液必须现配现用。
2)碘化丙啶(PI)有一定的致癌性,操作时一定要注意防护。若接触到皮肤,需要立即用自来水清洗。
3)为了您的安全和健康,请穿实验服并戴一次性手套操作。
4)本产品仅作科研用途!
相关产品
40747ES76 |
500T |
|
40747ES80 |
1000T |
|
40711ES10 |
10mg |
|
40711ES60 |
100 mg |
|
40710ES03 |
1mL |
|
60386ES08 |
5G |
|
60386ES25 |
25G |
HB190610
Q:40747ES76 Calcein-AM/PI 活细胞/死细胞双染试剂盒 Calcein-AM/PI Double Stain Kit 共聚焦皿可以不消化吗?
A:可以的,不用消化,直接染色观察。
Q:40747ES76 Calcein-AM/PI 活细胞/死细胞双染试剂盒,做流式实验时跑什么panel?
A:钙黄绿素的颜色选择 FL1 通道,PI 的颜色选择FL3 通道。
Q:Calcein-AM/PI 活细胞/死细胞双染试剂盒,这个染料不可以直接染贴壁细胞么? 直接在六孔板上看荧光,这个可以吗?
A:不建议,对光有影响,效果不好,可以使用玻璃皿。
Q:一个细胞两种颜色均被染上,怎么判断结果呢?
A:可判定为死细胞。原因:由于死细胞缺乏酯酶或酯酶活性很低,Calcein AM进入细胞后含有酯酶的活细胞可以产生Calcein,而死细胞不能或很少能产生Calcein,因此仅活细胞会被染色为强绿色荧光,死细胞不能被染色或者染色非常弱。PI由于不能穿透活细胞的细胞膜,而只能染色细胞膜完整性被破坏的死细胞。所以被染成红色的活黄色的(绿色和红色均被染上)可以判定为死细胞,活细胞只发绿色荧光。
建议:实验前进行摸索Calcein AM和PI的染色浓度,选择合适的染色浓度
[1] Du J, Zheng L, Gao P, et al. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell. 2022;29(4):545-558.e13. doi:10.1016/j.stem.2022.03.009(IF:24.633)
[2] Ji C, Qiu M, Ruan H, et al. Transcriptome Analysis Revealed the Symbiosis Niche of 3D Scaffolds to Accelerate Bone Defect Healing. Adv Sci (Weinh). 2022;9(8):e2105194. doi:10.1002/advs.202105194(IF:16.806)
[3] Wei Q, Arami H, Santos HA, et al. Intraoperative Assessment and Photothermal Ablation of the Tumor Margins Using Gold Nanoparticles. Adv Sci (Weinh). 2021;8(5):2002788. Published 2021 Jan 18. doi:10.1002/advs.202002788(IF:16.806)
[4] Qian M, Cheng Z, Luo G, et al. Molybdenum Diphosphide Nanorods with Laser-Potentiated Peroxidase Catalytic/Mild-Photothermal Therapy of Oral Cancer. Adv Sci (Weinh). 2021;9(1):2101527. Published 2021 Oct 31. doi:10.1002/advs.202101527(IF:16.806)
[5] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)
[6] Zhao LP, Zheng RR, Kong RJ, et al. Self-Delivery Ternary Bioregulators for Photodynamic Amplified Immunotherapy by Tumor Microenvironment Reprogramming [published online ahead of print, 2022 Jan 13]. ACS Nano. 2022;10.1021/acsnano.1c08978. doi:10.1021/acsnano.1c08978(IF:15.881)
[7] Li S, Xu J, Li R, et al. Stretchable Electronic Facial Masks for Sonophoresis [published online ahead of print, 2022 Apr 1]. ACS Nano. 2022;10.1021/acsnano.1c11181. doi:10.1021/acsnano.1c11181(IF:15.881)
[8] Zhang R, Deng L, Guo J, et al. Solvent Mediating the in Situ Self-Assembly of Polysaccharides for 3D Printing Biomimetic Tissue Scaffolds [published online ahead of print, 2021 Oct 29]. ACS Nano. 2021;10.1021/acsnano.1c05956. doi:10.1021/acsnano.1c05956(IF:15.881)
[9] Zhuang J, Zhang J, Wu M, Zhang Y. A Dynamic 3D Tumor Spheroid Chip Enables More Accurate Nanomedicine Uptake Evaluation. Adv Sci (Weinh). 2019;6(22):1901462. Published 2019 Oct 4. doi:10.1002/advs.201901462(IF:15.804)
[10] Lin S, Yang G, Jiang F, et al. A Magnesium-Enriched 3D Culture System that Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Adv Sci (Weinh). 2019;6(12):1900209. Published 2019 Apr 18. doi:10.1002/advs.201900209(IF:15.804)
[11] Wang T, Bai J, Lu M, et al. Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nat Commun. 2022;13(1):160. Published 2022 Jan 10. doi:10.1038/s41467-021-27816-1(IF:14.919)
[12] Zhang D, Zhong D, Ouyang J, et al. Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat Commun. 2022;13(1):1413. Published 2022 Mar 17. doi:10.1038/s41467-022-28744-4(IF:14.919)
[13] Tang H, Liu Y, Li B, et al. Water-soluble PANI:PSS designed for spontaneous non-disruptive membrane penetration and direct intracellular photothermal damage on bacteria. Bioact Mater. 2021;6(12):4758-4771. Published 2021 May 23. doi:10.1016/j.bioactmat.2021.05.019(IF:14.593)
[14] Zhao LM, Wang L, Zhang WQ, et al. Promotion of right ventricular outflow tract reconstruction using a novel cardiac patch incorporated with hypoxia-pretreated urine-derived stem cells. Bioact Mater. 2021;14:206-218. Published 2021 Nov 30. doi:10.1016/j.bioactmat.2021.11.021(IF:14.593)
[15] Li Z, Yue M, Liu X, et al. The PCK2-glycolysis axis assists three-dimensional-stiffness maintaining stem cell osteogenesis. Bioact Mater. 2022;18:492-506. Published 2022 Mar 30. doi:10.1016/j.bioactmat.2022.03.036(IF:14.593)
[16] Wei S, Hu Q, Ma J, et al. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater. 2022;18:300-320. Published 2022 Mar 18. doi:10.1016/j.bioactmat.2022.03.014(IF:14.593)
[17] Nie M, Kong B, Chen G, Xie Y, Zhao Y, Sun L. MSCs-laden injectable self-healing hydrogel for systemic sclerosis treatment. Bioact Mater. 2022;17:369-378. Published 2022 Jan 19. doi:10.1016/j.bioactmat.2022.01.006(IF:14.593)
[18] Yang Z, Du Y, Sun Q, et al. Albumin-Based Nanotheranostic Probe with Hypoxia Alleviating Potentiates Synchronous Multimodal Imaging and Phototherapy for Glioma. ACS Nano. 2020;14(5):6191-6212. doi:10.1021/acsnano.0c02249(IF:14.588)
[19] Zhao LP, Zheng RR, Huang JQ, et al. Self-Delivery Photo-Immune Stimulators for Photodynamic Sensitized Tumor Immunotherapy [published online ahead of print, 2020 Nov 25]. ACS Nano. 2020;10.1021/acsnano.0c06765. doi:10.1021/acsnano.0c06765(IF:14.588)
[20] Guo L, Zhang Y, Yang Z, et al. Tunneling Nanotubular Expressways for Ultrafast and Accurate M1 Macrophage Delivery of Anticancer Drugs to Metastatic Ovarian Carcinoma. ACS Nano. 2019;13(2):1078-1096. doi:10.1021/acsnano.8b08872(IF:13.903)
[21] Li L, Xiao B, Mu J, et al. A MnO2 Nanoparticle-Dotted Hydrogel Promotes Spinal Cord Repair via Regulating Reactive Oxygen Species Microenvironment and Synergizing with Mesenchymal Stem Cells. ACS Nano. 2019;13(12):14283-14293. doi:10.1021/acsnano.9b07598(IF:13.903)
[22] Zhao H, Xu J, Huang W, et al. Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano. 2019;13(6):6647-6661. doi:10.1021/acsnano.9b00972(IF:13.903)
[23] Jia Y, Wang X, Hu D, et al. Phototheranostics: Active Targeting of Orthotopic Glioma Using Biomimetic Proteolipid Nanoparticles [published correction appears in ACS Nano. 2021 Jun 22;15(6):10733]. ACS Nano. 2019;13(1):386-398. doi:10.1021/acsnano.8b06556(IF:13.709)
[24] Feng J, Xu Z, Liu F, et al. Versatile Catalytic Deoxyribozyme Vehicles for Multimodal Imaging-Guided Efficient Gene Regulation and Photothermal Therapy. ACS Nano. 2018;12(12):12888-12901. doi:10.1021/acsnano.8b08101(IF:13.709)
[25] Li XY, Deng FA, Zheng RR, et al. Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy. Small. 2021;17(40):e2102470. doi:10.1002/smll.202102470(IF:13.281)
[26] Huang JQ, Zhao LP, Zhou X, et al. Carrier Free O2 -Economizer for Photodynamic Therapy Against Hypoxic Tumor by Inhibiting Cell Respiration. Small. 2022;18(15):e2107467. doi:10.1002/smll.202107467(IF:13.281)
[27] Huang JQ, Zhao LP, Zhou X, et al. Carrier Free O2 -Economizer for Photodynamic Therapy Against Hypoxic Tumor by Inhibiting Cell Respiration. Small. 2022;18(15):e2107467. doi:10.1002/smll.202107467(IF:13.281)
[28] Wu N, Sun Y, Kong M, et al. Er-Based Luminescent Nanothermometer to Explore the Real-Time Temperature of Cells under External Stimuli. Small. 2022;18(14):e2107963. doi:10.1002/smll.202107963(IF:13.281)
[29] Yu H, Cheng Y, Wen C, Sun YQ, Yin XB. Triple cascade nanocatalyst with laser-activatable O2 supply and photothermal enhancement for effective catalytic therapy against hypoxic tumor. Biomaterials. 2022;280:121308. doi:10.1016/j.biomaterials.2021.121308(IF:12.479)
[30] Liu X, Chen W, Shao B, et al. Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone. Biomaterials. 2021;276:120998. doi:10.1016/j.biomaterials.2021.120998(IF:12.479)
[31] He XT, Li X, Zhang M, et al. Role of molybdenum in material immunomodulation and periodontal wound healing: Targeting immunometabolism and mitochondrial function for macrophage modulation. Biomaterials. 2022;283:121439. doi:10.1016/j.biomaterials.2022.121439(IF:12.479)
[32] Zhao L, Zheng R, Liu L, et al. Self-delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy. Biomaterials. 2021;275:120970. doi:10.1016/j.biomaterials.2021.120970(IF:12.479)
[33] Dong X, Wu P, Yan L, et al. Oriented nanofibrous P(MMD-co-LA)/Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials. 2022;280:121288. doi:10.1016/j.biomaterials.2021.121288(IF:12.479)
[34] Dong X, Wu P, Yan L, et al. Oriented nanofibrous P(MMD-co-LA)/Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials. 2022;280:121288. doi:10.1016/j.biomaterials.2021.121288(IF:12.479)
[35] Wang R, Shi M, Xu F, et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Commun. 2020;11(1):4465. Published 2020 Sep 8. doi:10.1038/s41467-020-18267-1(IF:12.121)
[36] Yang Y, Hu D, Lu Y, et al. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B. 2022;12(6):2710-2730. doi:10.1016/j.apsb.2021.08.021(IF:11.614)
[37] Hou L, Liu Y, Liu W, et al. In situ triggering antitumor efficacy of alcohol-abuse drug disulfiram through Cu-based metal-organic framework nanoparticles. Acta Pharm Sin B. 2021;11(7):2016-2030. doi:10.1016/j.apsb.2021.01.013(IF:11.614)
[38] Li A, Liang C, Xu L, et al. Boosting 5-ALA-based photodynamic therapy by a liposomal nanomedicine through intracellular iron ion regulation. Acta Pharm Sin B. 2021;11(5):1329-1340. doi:10.1016/j.apsb.2021.03.017(IF:11.614)
[39] Zhong D, Li W, Hua S, et al. Calcium phosphate engineered photosynthetic microalgae to combat hypoxic-tumor by in-situ modulating hypoxia and cascade radio-phototherapy. Theranostics. 2021;11(8):3580-3594. Published 2021 Jan 22. doi:10.7150/thno.55441(IF:11.556)
[40] Yin H, Zhou M, Chen X, et al. Fructose-coated Ångstrom silver prevents sepsis by killing bacteria and attenuating bacterial toxin-induced injuries. Theranostics. 2021;11(17):8152-8171. Published 2021 Jul 13. doi:10.7150/thno.55334(IF:11.556)
[41] Yin H, Zhou M, Chen X, et al. Fructose-coated Ångstrom silver prevents sepsis by killing bacteria and attenuating bacterial toxin-induced injuries. Theranostics. 2021;11(17):8152-8171. Published 2021 Jul 13. doi:10.7150/thno.55334(IF:11.556)
[42] Li J, Li J, Yao Y, et al. Biodegradable electrospun nanofibrous platform integrating antiplatelet therapy-chemotherapy for preventing postoperative tumor recurrence and metastasis. Theranostics. 2022;12(7):3503-3517. Published 2022 Apr 24. doi:10.7150/thno.69795(IF:11.556)
[43] Li Y, Chen W, Qi Y, et al. H2 S-Scavenged and Activated Iron Oxide-Hydroxide Nanospindles for MRI-Guided Photothermal Therapy and Ferroptosis in Colon Cancer. Small. 2020;16(37):e2001356. doi:10.1002/smll.202001356(IF:11.459)
[44] Qu F, Wang P, Zhang K, et al. Manipulation of Mitophagy by "All-in-One" nanosensitizer augments sonodynamic glioma therapy [published correction appears in Autophagy. 2022 Feb;18(2):470]. Autophagy. 2020;16(8):1413-1435. doi:10.1080/15548627.2019.1687210(IF:11.059)
[45] Wang K, Jiang L, Zhong Y, et al. Ferrostatin-1-loaded liposome for treatment of corneal alkali burn via targeting ferroptosis. Bioeng Transl Med. 2021;7(2):e10276. Published 2021 Dec 8. doi:10.1002/btm2.10276(IF:10.711)
[46] Zheng P, Li Y, Chi Q, et al. Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine [published online ahead of print, 2022 Jun 14]. J Hazard Mater. 2022;437:129370. doi:10.1016/j.jhazmat.2022.129370(IF:10.588)
[47] Wang P, Wang Y, Yi Y, et al. MXenes-integrated microneedle combined with asiaticoside to penetrate the cuticle for treatment of diabetic foot ulcer. J Nanobiotechnology. 2022;20(1):259. Published 2022 Jun 7. doi:10.1186/s12951-022-01468-9(IF:10.435)
[48] Tang Y, Chen C, Liu F, et al. Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing. Biomaterials. 2020;241:119837. doi:10.1016/j.biomaterials.2020.119837(IF:10.317)
[49] Chen C, Chen Y, Li M, et al. Functional decellularized fibrocartilaginous matrix graft for rotator cuff enthesis regeneration: A novel technique to avoid in-vitro loading of cells. Biomaterials. 2020;250:119996. doi:10.1016/j.biomaterials.2020.119996(IF:10.317)
[50] Yang Y, Qiao X, Huang R, et al. E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials. 2020;230:119618. doi:10.1016/j.biomaterials.2019.119618(IF:10.273)
[51] Chen C, Su W, Liu Y, et al. Artificial anaerobic cell dormancy for tumor gaseous microenvironment regulation therapy. Biomaterials. 2019;200:48-55. doi:10.1016/j.biomaterials.2019.02.007(IF:10.273)
[52] Tang Y, Lin S, Yin S, et al. In situ gas foaming based on magnesium particle degradation: A novel approach to fabricate injectable macroporous hydrogels. Biomaterials. 2020;232:119727. doi:10.1016/j.biomaterials.2019.119727(IF:10.273)
[53] Zhong D, Zhao J, Li Y, et al. Laser-triggered aggregated cubic α-Fe2O3@Au nanocomposites for magnetic resonance imaging and photothermal/enhanced radiation synergistic therapy. Biomaterials. 2019;219:119369. doi:10.1016/j.biomaterials.2019.119369(IF:10.273)
[54] Yu Y, Xie R, He Y, et al. Dual-core coaxial bioprinting of double-channel constructs with a potential for perfusion and interaction of cells. Biofabrication. 2022;14(3):10.1088/1758-5090/ac6e88. Published 2022 May 26. doi:10.1088/1758-5090/ac6e88(IF:10.020)
[55] Chen H, Wang X, Wang J, et al. In vitroadipogenesis and long-term adipocyte culture in adipose tissue-derived cell banks. Biofabrication. 2021;13(3):10.1088/1758-5090/ac0610. Published 2021 Jul 5. doi:10.1088/1758-5090/ac0610(IF:10.020)
[56] Ge Z, Dai L, Zhao J, et al. Bubble-based microrobots enable digital assembly of heterogeneous microtissue modules. Biofabrication. 2022;14(2):10.1088/1758-5090/ac5be1. Published 2022 Mar 29. doi:10.1088/1758-5090/ac5be1(IF:10.020)
[57] Shen Y, Wang X, Wang Y, et al. Bilayer silk fibroin/sodium alginate scaffold promotes vascularization and advances inflammation stage in full-thickness wound. Biofabrication. 2022;14(3):10.1088/1758-5090/ac73b7. Published 2022 Jun 10. doi:10.1088/1758-5090/ac73b7(IF:10.020)
[58] Zhao LP, Chen SY, Zheng RR, et al. Self-Delivery Nanomedicine for Glutamine-Starvation Enhanced Photodynamic Tumor Therapy. Adv Healthc Mater. 2022;11(3):e2102038. doi:10.1002/adhm.202102038(IF:9.933)
[59] Zhang C, Yong Y, Song L, et al. Multifunctional WS2 @Poly(ethylene imine) Nanoplatforms for Imaging Guided Gene-Photothermal Synergistic Therapy of Cancer. Adv Healthc Mater. 2016;5(21):2776-2787. doi:10.1002/adhm.201600633(IF:9.933)
[60] Zhong H, Huang PY, Yan P, et al. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater. 2021;10(19):e2100770. doi:10.1002/adhm.202100770(IF:9.933)
[61] Wang P, Meng X, Wang R, et al. Biomaterial Scaffolds Made of Chemically Cross-Linked Gelatin Microsphere Aggregates (C-GMSs) Promote Vascularized Bone Regeneration. Adv Healthc Mater. 2022;11(13):e2102818. doi:10.1002/adhm.202102818(IF:9.933)
[62] Xing L, Yang CX, Zhao D, et al. A carrier-free anti-inflammatory platinum (II) self-delivered nanoprodrug for enhanced breast cancer therapy. J Control Release. 2021;331:460-471. doi:10.1016/j.jconrel.2021.01.037(IF:9.776)
[63] Xiao C, Tong C, Fan J, et al. Biomimetic nanoparticles loading with gamabutolin-indomethacin for chemo/photothermal therapy of cervical cancer and anti-inflammation. J Control Release. 2021;339:259-273. doi:10.1016/j.jconrel.2021.09.034(IF:9.776)
[64] Liu J, Liu K, Zhang L, et al. Heat/pH-boosted release of 5-fluorouracil and albumin-bound paclitaxel from Cu-doped layered double hydroxide nanomedicine for synergistical chemo-photo-therapy of breast cancer. J Control Release. 2021;335:49-58. doi:10.1016/j.jconrel.2021.05.011(IF:9.776)
[65] Xiao C, Tong C, Fan J, et al. Biomimetic nanoparticles loading with gamabutolin-indomethacin for chemo/photothermal therapy of cervical cancer and anti-inflammation. J Control Release. 2021;339:259-273. doi:10.1016/j.jconrel.2021.09.034(IF:9.776)
[66] Wang X, Yan F, Liu X, et al. Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins. J Control Release. 2018;286:358-368. doi:10.1016/j.jconrel.2018.07.048(IF:9.776)
[67] Qi LY, Wang Y, Hu LF, et al. Enhanced nuclear gene delivery via integrating and streamlining intracellular pathway. J Control Release. 2022;341:511-523. doi:10.1016/j.jconrel.2021.11.046(IF:9.776)
[68] Liu H, Liu S, Qiu X, et al. Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy. 2020;16(12):2140-2155. doi:10.1080/15548627.2020.1717128(IF:9.770)
[69] Liu H, Liu S, Qiu X, et al. Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy. 2020;16(12):2140-2155. doi:10.1080/15548627.2020.1717128(IF:9.770)
[70] Yang C, Wang M, Wang W, et al. Electrodeposition induced covalent cross-linking of chitosan for electrofabrication of hydrogel contact lenses. Carbohydr Polym. 2022;292:119678. doi:10.1016/j.carbpol.2022.119678(IF:9.381)
[71] Zhang Q, Tong J, Zhou W, et al. Antibacterial and antioxidant chitosan nanoparticles improve the preservation effect for donor kidneys in vitro. Carbohydr Polym. 2022;287:119326. doi:10.1016/j.carbpol.2022.119326(IF:9.381)
[72] Wei Z, Pan P, Hong FF, Cao Z, Ji Y, Chen L. A novel approach for efficient fabrication of chitosan nanoparticles-embedded bacterial nanocellulose conduits. Carbohydr Polym. 2021;264:118002. doi:10.1016/j.carbpol.2021.118002(IF:9.381)
[73] Min T, Sun X, Zhou L, Du H, Zhu Z, Wen Y. Electrospun pullulan/PVA nanofibers integrated with thymol-loaded porphyrin metal-organic framework for antibacterial food packaging. Carbohydr Polym. 2021;270:118391. doi:10.1016/j.carbpol.2021.118391(IF:9.381)
[74] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[75] Zhao Q, Li J, Wu B, et al. Smart Biomimetic Nanocomposites Mediate Mitochondrial Outcome through Aerobic Glycolysis Reprogramming: A Promising Treatment for Lymphoma. ACS Appl Mater Interfaces. 2020;12(20):22687-22701. doi:10.1021/acsami.0c05763(IF:9.229)
[76] Wu W, Zhang S, Zhang T, Mu Y. Immobilized Droplet Arrays in Thermosetting Oil for Dynamic Proteolytic Assays of Single Cells. ACS Appl Mater Interfaces. 2021;13(5):6081-6090. doi:10.1021/acsami.0c21696(IF:9.229)
[77] Zhao C, Sun S, Li S, et al. Programmed Stimuli-Responsive Carbon Dot-Nanogel Hybrids for Imaging-Guided Enhanced Tumor Phototherapy. ACS Appl Mater Interfaces. 2022;14(8):10142-10153. doi:10.1021/acsami.2c00174(IF:9.229)
[78] Zhuang A, Huang X, Fan S, Yao X, Zhu B, Zhang Y. One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. ACS Appl Mater Interfaces. 2022;14(1):123-137. doi:10.1021/acsami.1c16855(IF:9.229)
[79] Liu Y, Nie N, Tang H, et al. Effective Antibacterial Activity of Degradable Copper-Doped Phosphate-Based Glass Nanozymes. ACS Appl Mater Interfaces. 2021;13(10):11631-11645. doi:10.1021/acsami.0c22746(IF:9.229)
[80] Huang WQ, Zhu YQ, You W, et al. Tumor Microenvironment Triggered the In Situ Synthesis of an Excellent Sonosensitizer in Tumor for Sonodynamic Therapy [published online ahead of print, 2022 Jun 7]. ACS Appl Mater Interfaces. 2022;10.1021/acsami.2c05369. doi:10.1021/acsami.2c05369(IF:9.229)
[81] Hussain M, Suo H, Xie Y, et al. Dopamine-Substituted Multidomain Peptide Hydrogel with Inherent Antimicrobial Activity and Antioxidant Capability for Infected Wound Healing. ACS Appl Mater Interfaces. 2021;13(25):29380-29391. doi:10.1021/acsami.1c07656(IF:9.229)
[82] Zhang R, Tian Y, Pang L, et al. Wound Microenvironment-Responsive Protein Hydrogel Drug-Loaded System with Accelerating Healing and Antibacterial Property. ACS Appl Mater Interfaces. 2022;14(8):10187-10199. doi:10.1021/acsami.2c00373(IF:9.229)
[83] Yang L, He X, Jing G, et al. Layered Double Hydroxide Nanoparticles with Osteogenic Effects as miRNA Carriers to Synergistically Promote Osteogenesis of MSCs. ACS Appl Mater Interfaces. 2021;13(41):48386-48402. doi:10.1021/acsami.1c14382(IF:9.229)
[84] Xu Z, Liu Y, Ma R, et al. Thermosensitive Hydrogel Incorporating Prussian Blue Nanoparticles Promotes Diabetic Wound Healing via ROS Scavenging and Mitochondrial Function Restoration. ACS Appl Mater Interfaces. 2022;14(12):14059-14071. doi:10.1021/acsami.1c24569(IF:9.229)
[85] Guo Q, Dong Y, Zhang Y, et al. Sequential Release of Pooled siRNAs and Paclitaxel by Aptamer-Functionalized Shell-Core Nanoparticles to Overcome Paclitaxel Resistance of Prostate Cancer. ACS Appl Mater Interfaces. 2021;13(12):13990-14003. doi:10.1021/acsami.1c00852(IF:9.229)
[86] Song X, Jiang Y, Zhang W, et al. Transcutaneous tumor vaccination combined with anti-programmed death-1 monoclonal antibody treatment produces a synergistic antitumor effect. Acta Biomater. 2022;140:247-260. doi:10.1016/j.actbio.2021.11.033(IF:8.947)
[87] Li M, Guo R, Wei J, et al. Polydopamine-based nanoplatform for photothermal ablation with long-term immune activation against melanoma and its recurrence. Acta Biomater. 2021;136:546-557. doi:10.1016/j.actbio.2021.09.014(IF:8.947)
[88] Li J, Wang J, Li J, et al. Fabrication of Fe3O4@PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization. Acta Biomater. 2021;131:532-543. doi:10.1016/j.actbio.2021.07.006(IF:8.947)
[89] Wu S, Gu L, Qin J, et al. Rapid Label-Free Isolation of Circulating Tumor Cells from Patients' Peripheral Blood Using Electrically Charged Fe3O4 Nanoparticles. ACS Appl Mater Interfaces. 2020;12(4):4193-4203. doi:10.1021/acsami.9b16385(IF:8.758)
[90] Zhang H, Ren Y, Hou L, Chang J, Zhang Z, Zhang H. Positioning Remodeling Nanogels Mediated Codelivery of Antivascular Drug and Autophagy Inhibitor for Cooperative Tumor Therapy. ACS Appl Mater Interfaces. 2020;12(6):6978-6990. doi:10.1021/acsami.9b22412(IF:8.758)
[91] Ganbold T, Bao Q, Zandan J, Hasi A, Baigude H. Modulation of Microglia Polarization through Silencing of NF-κB p65 by Functionalized Curdlan Nanoparticle-Mediated RNAi. ACS Appl Mater Interfaces. 2020;12(10):11363-11374. doi:10.1021/acsami.9b23004(IF:8.758)
[92] Zhang H, Wu Y, Wang J, et al. In Vivo MR Imaging of Glioma Recruitment of Adoptive T-Cells Labeled with NaGdF4 -TAT Nanoprobes. Small. 2018;14(3):10.1002/smll.201702951. doi:10.1002/smll.201702951(IF:8.643)
[93] Liu P, Wang Y, Liu Y, Tan F, Li J, Li N. S-nitrosothiols loaded mini-sized Au@silica nanorod elicits collagen depletion and mitochondrial damage in solid tumor treatment. Theranostics. 2020;10(15):6774-6789. Published 2020 May 20. doi:10.7150/thno.42661(IF:8.579)
[94] Shang J, Zhu Z, Chen Y, et al. Small-molecule activating SIRT6 elicits therapeutic effects and synergistically promotes anti-tumor activity of vitamin D3 in colorectal cancer. Theranostics. 2020;10(13):5845-5864. Published 2020 Apr 27. doi:10.7150/thno.44043(IF:8.579)
[95] Chen H, Cheng Y, Wang X, et al. 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics. 2020;10(26):12127-12143. Published 2020 Oct 26. doi:10.7150/thno.52450(IF:8.579)
[96] Hu XK, Rao SS, Tan YJ, et al. Fructose-coated Angstrom silver inhibits osteosarcoma growth and metastasis via promoting ROS-dependent apoptosis through the alteration of glucose metabolism by inhibiting PDK. Theranostics. 2020;10(17):7710-7729. Published 2020 Jun 19. doi:10.7150/thno.45858(IF:8.579)
[97] Wang X, Cai J, Sun L, et al. Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy. ACS Appl Mater Interfaces. 2019;11(5):4745-4756. doi:10.1021/acsami.8b15586(IF:8.456)
[98] Gao F, Li W, Deng J, et al. Recombinant Human Hair Keratin Nanoparticles Accelerate Dermal Wound Healing. ACS Appl Mater Interfaces. 2019;11(20):18681-18690. doi:10.1021/acsami.9b01725(IF:8.456)
[99] Sun S, Chen J, Jiang K, et al. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. ACS Appl Mater Interfaces. 2019;11(6):5791-5803. doi:10.1021/acsami.8b19042(IF:8.456)
[100] Li Y, Liu Y, Xun X, Zhang W, Xu Y, Gu D. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. ACS Appl Mater Interfaces. 2019;11(40):36359-36370. doi:10.1021/acsami.9b12206(IF:8.456)
[101] Yang P, Zhang S, Zhang N, et al. Tailoring Synthetic Melanin Nanoparticles for Enhanced Photothermal Therapy. ACS Appl Mater Interfaces. 2019;11(45):42671-42679. doi:10.1021/acsami.9b16861(IF:8.456)
[102] Xing Y, Ding T, Wang Z, et al. Temporally Controlled Photothermal/Photodynamic and Combined Therapy for Overcoming Multidrug Resistance of Cancer by Polydopamine Nanoclustered Micelles. ACS Appl Mater Interfaces. 2019;11(15):13945-13953. doi:10.1021/acsami.9b00472(IF:8.456)
[103] Cao Y, Li S, Chen C, et al. Rattle-type Au@Cu2-xS hollow mesoporous nanocrystals with enhanced photothermal efficiency for intracellular oncogenic microRNA detection and chemo-photothermal therapy. Biomaterials. 2018;158:23-33. doi:10.1016/j.biomaterials.2017.12.009(IF:8.402)
[104] Zheng W, Huang R, Jiang B, Zhao Y, Zhang W, Jiang X. An Early-Stage Atherosclerosis Research Model Based on Microfluidics. Small. 2016;12(15):2022-2034. doi:10.1002/smll.201503241(IF:8.315)
[105] Chen L, You Q, Liu M, et al. Remodeling of dermal adipose tissue alleviates cutaneous toxicity induced by anti-EGFR therapy. Elife. 2022;11:e72443. Published 2022 Mar 24. doi:10.7554/eLife.72443(IF:8.146)
[106] Yue Y, Gong X, Jiao W, et al. In-situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application. J Colloid Interface Sci. 2021;592:310-318. doi:10.1016/j.jcis.2021.02.048(IF:8.128)
[107] Liu Y, Deng F, Zheng R, et al. Self-delivery nanomedicine for vascular disruption-supplemented chemo-photodynamic tumor therapy. J Colloid Interface Sci. 2022;612:562-571. doi:10.1016/j.jcis.2021.12.128(IF:8.128)
[108] Zheng R, Liu Y, Yu B, et al. Carrier free nanomedicine for synergistic cancer therapy by initiating apoptosis and paraptosis. J Colloid Interface Sci. 2022;622:298-308. doi:10.1016/j.jcis.2022.04.090(IF:8.128)
[109] Ke R, Zhen X, Wang HS, et al. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci. 2022;609:307-319. doi:10.1016/j.jcis.2021.12.009(IF:8.128)
[110] Li J, Huang J, Ao Y, et al. Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. ACS Appl Mater Interfaces. 2018;10(27):22985-22996. doi:10.1021/acsami.8b07090(IF:8.097)
[111] Zhang A, Pan S, Zhang Y, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 2019;9(12):3443-3458. Published 2019 May 24. doi:10.7150/thno.33266(IF:8.063)
[112] Guo L, Zhang Y, Wei R, Wang C, Feng M. Lipopolysaccharide-anchored macrophages hijack tumor microtube networks for selective drug transport and augmentation of antitumor effects in orthotopic lung cancer. Theranostics. 2019;9(23):6936-6948. Published 2019 Sep 21. doi:10.7150/thno.37380(IF:8.063)
[113] Zhou TJ, Xing L, Fan YT, Cui PF, Jiang HL. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. J Control Release. 2019;307:44-54. doi:10.1016/j.jconrel.2019.06.016(IF:7.901)
[114] Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-5399. doi:10.1039/d0nr08831e(IF:7.790)
[115] Li R, Wu X, Li J, et al. A covalently conjugated branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery. Nanoscale. 2022;14(26):9369-9378. Published 2022 Jul 7. doi:10.1039/d2nr01252a(IF:7.790)
[116] Duan Z , Luo Q , Gu L , et al. A co-delivery nanoplatform for a lignan-derived compound and perfluorocarbon tuning IL-25 secretion and the oxygen level in tumor microenvironments for meliorative tumor radiotherapy. Nanoscale. 2021;13(32):13681-13692. doi:10.1039/d1nr03738b(IF:7.790)
[117] Zhang X, Wang C, Wu J, et al. An acid-seeking carrier-free drug achieves high antitumor activity via a "solution-particle" transition. J Control Release. 2017;262:305-316. doi:10.1016/j.jconrel.2017.08.008(IF:7.786)
[118] Yang X, Shi X, Zhang Y, et al. Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. J Control Release. 2020;323:333-349. doi:10.1016/j.jconrel.2020.04.027(IF:7.727)
[119] Xu F, Zheng Z, Yao M, et al. A regulatory mechanism of a stepwise osteogenesis-mimicking decellularized extracellular matrix on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells [published online ahead of print, 2022 Jun 29]. J Mater Chem B. 2022;10.1039/d2tb00721e. doi:10.1039/d2tb00721e(IF:7.571)
[120] Zhu M, Sheng Z, Jia Y, et al. Indocyanine Green-holo-Transferrin Nanoassemblies for Tumor-Targeted Dual-Modal Imaging and Photothermal Therapy of Glioma [published correction appears in ACS Appl Mater Interfaces. 2021 Jun 2;13(21):25574]. ACS Appl Mater Interfaces. 2017;9(45):39249-39258. doi:10.1021/acsami.7b14076(IF:7.504)
[121] Xiao D, Yan H, Wang Q, et al. Trilayer Three-Dimensional Hydrogel Composite Scaffold Containing Encapsulated Adipose-Derived Stem Cells Promotes Bladder Reconstruction via SDF-1α/CXCR4 Pathway. ACS Appl Mater Interfaces. 2017;9(44):38230-38241. doi:10.1021/acsami.7b10630(IF:7.504)
[122] Liu G, Wang L, Liu J, et al. Engineering of a Core-Shell Nanoplatform to Overcome Multidrug Resistance via ATP Deprivation. Adv Healthc Mater. 2020;9(20):e2000432. doi:10.1002/adhm.202000432(IF:7.367)
[123] Li Z, You S, Mao R, et al. Architecting polyelectrolyte hydrogels with Cu-assisted polydopamine nanoparticles for photothermal antibacterial therapy. Mater Today Bio. 2022;15:100264. Published 2022 Apr 20. doi:10.1016/j.mtbio.2022.100264(IF:7.348)
[124] Zhong Y, Zhang X, Yang L, et al. Hierarchical dual-responsive cleavable nanosystem for synergetic photodynamic/photothermal therapy against melanoma. Mater Sci Eng C Mater Biol Appl. 2021;131:112524. doi:10.1016/j.msec.2021.112524(IF:7.328)
[125] Ge Z, Yu H, Yang W, et al. Customized construction of microscale multi-component biostructures for cellular applications [published online ahead of print, 2021 Dec 10]. Mater Sci Eng C Mater Biol Appl. 2021;112599. doi:10.1016/j.msec.2021.112599(IF:7.328)
[126] Zhang Y, Sun N, Zhu M, et al. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis [published online ahead of print, 2022 Jan 10]. Mater Sci Eng C Mater Biol Appl. 2022;112651. doi:10.1016/j.msec.2022.112651(IF:7.328)
[127] Liu B, Qiao G, Han Y, et al. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater. 2020;117:361-373. doi:10.1016/j.actbio.2020.09.040(IF:7.242)
[128] Liu P, Zhang D, Dai Y, Lin J, Li Y, Wen C. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques. Acta Biomater. 2020;114:485-496. doi:10.1016/j.actbio.2020.07.048(IF:7.242)
[129] Guo Z, Liu Y, Cheng X, et al. Versatile biomimetic cantharidin-tellurium nanoparticles enhance photothermal therapy by inhibiting the heat shock response for combined tumor therapy. Acta Biomater. 2020;110:208-220. doi:10.1016/j.actbio.2020.03.028(IF:7.242)
[130] Fan J, Liu B, Long Y, et al. Sequentially-targeted biomimetic nano drug system for triple-negative breast cancer ablation and lung metastasis inhibition. Acta Biomater. 2020;113:554-569. doi:10.1016/j.actbio.2020.06.025(IF:7.242)
[131] Zhou J , Li T , Zhang C , Xiao J , Cui D , Cheng Y . Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging. Nanoscale. 2018;10(20):9707-9719. doi:10.1039/c8nr00994e(IF:7.233)
[132] Tong X, Qi X, Mao R, et al. Construction of functional curdlan hydrogels with bio-inspired polydopamine for synergistic periodontal antibacterial therapeutics. Carbohydr Polym. 2020;245:116585. doi:10.1016/j.carbpol.2020.116585(IF:7.182)
[133] Bao L, Tang J, Hong FF, Lu X, Chen L. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications. Carbohydr Polym. 2020;239:116246. doi:10.1016/j.carbpol.2020.116246(IF:7.182)
[134] Lin C, Tong F, Liu R, et al. GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy. Acta Pharm Sin B. 2020;10(12):2348-2361. doi:10.1016/j.apsb.2020.10.009(IF:7.097)
[135] Su G, Li S, Deng X, et al. Low concentration of Tween-20 enhanced the adhesion and biofilm formation of Acidianus manzaensis YN-25 on chalcopyrite surface. Chemosphere. 2021;284:131403. doi:10.1016/j.chemosphere.2021.131403(IF:7.086)
[136] Su G, Li S, Deng X, et al. Low concentration of Tween-20 enhanced the adhesion and biofilm formation of Acidianus manzaensis YN-25 on chalcopyrite surface. Chemosphere. 2021;284:131403. doi:10.1016/j.chemosphere.2021.131403(IF:7.086)
[137] Mei E, Chen C, Li C, et al. Injectable and Biodegradable Chitosan Hydrogel-Based Drug Depot Contributes to Synergistic Treatment of Tumors. Biomacromolecules. 2021;22(12):5339-5348. doi:10.1021/acs.biomac.1c01279(IF:6.988)
[138] Cao W , Liu B , Xia F , et al. MnO2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090-3102. doi:10.1039/c9nr07947e(IF:6.970)
[139] Zhang T , Jiang Z , Xve T , et al. One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. Nanoscale. 2019;11(45):21759-21766. doi:10.1039/c9nr05671h(IF:6.970)
[140] Zhang X, Qu Q, Cheng W, et al. A Prussian blue alginate microparticles platform based on gas-shearing strategy for antitumor and antibacterial therapy. Int J Biol Macromol. 2022;209(Pt A):794-800. doi:10.1016/j.ijbiomac.2022.04.064(IF:6.953)
[141] Chen J, Zhao Y, Zhou A, Zhang Y, Xu Y, Ning X. Alginate functionalized biomimetic 3D scaffold improves cell culture and cryopreservation for cellular therapy. Int J Biol Macromol. 2022;211:159-169. doi:10.1016/j.ijbiomac.2022.05.065(IF:6.953)
[142] Shen Y, Wang X, Li B, Guo Y, Dong K. Development of silk fibroin‑sodium alginate scaffold loaded silk fibroin nanoparticles for hemostasis and cell adhesion. Int J Biol Macromol. 2022;211:514-523. doi:10.1016/j.ijbiomac.2022.05.064(IF:6.953)
[143] Liu J, Gao J, Zhang A, et al. Carbon nanocage-based nanozyme as an endogenous H2O2-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale. 2020;12(42):21674-21686. doi:10.1039/d0nr05945e(IF:6.895)
[144] Zhou L, Pi W, Hao M, et al. An injectable and biodegradable nano-photothermal DNA hydrogel enhances penetration and efficacy of tumor therapy. Biomater Sci. 2021;9(14):4904-4921. doi:10.1039/d1bm00568e(IF:6.843)
[145] Yang N, Zheng RR, Chen ZY, et al. A carrier free photodynamic oxidizer for enhanced tumor therapy by redox homeostasis disruption. Biomater Sci. 2022;10(6):1575-1581. Published 2022 Mar 15. doi:10.1039/d1bm01876k(IF:6.843)
[146] Cheng X, Liu Y, Zhou H, et al. Cantharidin-loaded biomimetic MOF nanoparticle cascade to enhance the Fenton reaction based on amplified photothermal therapy. Biomater Sci. 2021;9(23):7862-7875. Published 2021 Nov 23. doi:10.1039/d1bm01396c(IF:6.843)
[147] Luo S, Zhao Y, Pan K, et al. Microneedle-mediated delivery of MIL-100(Fe) as a tumor microenvironment-responsive biodegradable nanoplatform for O2-evolving chemophototherapy [published correction appears in Biomater Sci. 2021 Nov 23;9(23):8051]. Biomater Sci. 2021;9(20):6772-6786. Published 2021 Oct 12. doi:10.1039/d1bm00888a(IF:6.843)
[148] Huang Y, Ma Z, Kuang X, Zhang Q, Li H, Lai D. Sodium alginate-bioglass-encapsulated hAECs restore ovarian function in premature ovarian failure by stimulating angiogenic factor secretion. Stem Cell Res Ther. 2021;12(1):223. Published 2021 Apr 1. doi:10.1186/s13287-021-02280-2(IF:6.832)
[149] Cao X, Luo P, Huang J, et al. Intraarticular senescent chondrocytes impair the cartilage regeneration capacity of mesenchymal stem cells. Stem Cell Res Ther. 2019;10(1):86. Published 2019 Mar 12. doi:10.1186/s13287-019-1193-1(IF:6.832)
[150] Jiang Z, Liu S, Xiao X, et al. High-throughput probing macrophage-bacteria interactions at the single cell level with microdroplets [published online ahead of print, 2022 Jun 29]. Lab Chip. 2022;10.1039/d2lc00516f. doi:10.1039/d2lc00516f(IF:6.799)
[151] Shi X, Jiang L, Zhao X, et al. Adipose-Derived Stromal Cell-Sheets Sandwiched, Book-Shaped Acellular Dermal Matrix Capable of Sustained Release of Basic Fibroblast Growth Factor Promote Diabetic Wound Healing. Front Cell Dev Biol. 2021;9:646967. Published 2021 Mar 25. doi:10.3389/fcell.2021.646967(IF:6.684)
[152] Chen L, Zhang T, Sun S, Ren W, Wu A, Xu H. Ultrasound-Mediated Cavitation Enhances EGFR-Targeting PLGA-PEG Nano-Micelle Delivery for Triple-Negative Breast Cancer Treatment. Cancers (Basel). 2021;13(14):3383. Published 2021 Jul 6. doi:10.3390/cancers13143383(IF:6.639)
[153] He XT, Li X, Xia Y, et al. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: Experimental studies in vitro and in rats. Acta Biomater. 2019;88:162-180. doi:10.1016/j.actbio.2019.02.004(IF:6.638)
[154] Wang Z, Wang L, Prabhakar N, et al. CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy. Acta Biomater. 2019;86:416-428. doi:10.1016/j.actbio.2019.01.002(IF:6.638)
[155] Mao Y, Du J, Chen X, et al. Maltol Promotes Mitophagy and Inhibits Oxidative Stress via the Nrf2/PINK1/Parkin Pathway after Spinal Cord Injury. Oxid Med Cell Longev. 2022;2022:1337630. Published 2022 Feb 1. doi:10.1155/2022/1337630(IF:6.543)
[156] Li Y, Lv Y, Zhu Y, et al. Low-Temperature Plasma-Activated Medium Inhibited Proliferation and Progression of Lung Cancer by Targeting the PI3K/Akt and MAPK Pathways. Oxid Med Cell Longev. 2022;2022:9014501. Published 2022 Mar 18. doi:10.1155/2022/9014501(IF:6.543)
[157] Min T, Zhou L, Sun X, et al. Enzyme-responsive food packaging system based on pectin-coated poly (lactic acid) nanofiber films for controlled release of thymol. Food Res Int. 2022;157:111256. doi:10.1016/j.foodres.2022.111256(IF:6.475)
[158] Zhu L, Dai Y, Gao L, Zhao Q. Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis. Int J Nanomedicine. 2021;16:4559-4577. Published 2021 Jul 5. doi:10.2147/IJN.S309062(IF:6.400)
[159] Zhang C, Wang X, Wang J, et al. TCPP-Isoliensinine Nanoparticles for Mild-Temperature Photothermal Therapy. Int J Nanomedicine. 2021;16:6797-6806. Published 2021 Oct 5. doi:10.2147/IJN.S317462(IF:6.400)
[160] Zhang B, Luo Q, Deng B, Morita Y, Ju Y, Song G. Construction of tendon replacement tissue based on collagen sponge and mesenchymal stem cells by coupled mechano-chemical induction and evaluation of its tendon repair abilities. Acta Biomater. 2018;74:247-259. doi:10.1016/j.actbio.2018.04.047(IF:6.383)
[161] He XT, Wu RX, Xu XY, Wang J, Yin Y, Chen FM. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions. Acta Biomater. 2018;71:132-147. doi:10.1016/j.actbio.2018.02.015(IF:6.383)
[162] Cao Y, Yao Y, Li Y, Yang X, Cao Z, Yang G. Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci. 2019;544:121-129. doi:10.1016/j.jcis.2019.02.049(IF:6.361)
[163] Guo J, Wei W, Zhao Y, Dai H. Iron oxide nanoparticles with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Regen Biomater. 2022;9:rbac041. Published 2022 Jun 23. doi:10.1093/rb/rbac041(IF:6.353)
[164] Wei Y, Zhu G, Zhao Z, et al. Individualized plasticity autograft mimic with efficient bioactivity inducing osteogenesis. Int J Oral Sci. 2021;13(1):14. Published 2021 Apr 12. doi:10.1038/s41368-021-00120-w(IF:6.344)
[165] Wang L, Zhang Y, Han Y, et al. Nanoscale photosensitizer with tumor-selective turn-on fluorescence and activatable photodynamic therapy treatment for COX-2 overexpressed cancer cells. J Mater Chem B. 2021;9(8):2001-2009. doi:10.1039/d0tb02828b(IF:6.331)
[166] Long Y, Wang Z, Fan J, et al. A hybrid membrane coating nanodrug system against gastric cancer via the VEGFR2/STAT3 signaling pathway. J Mater Chem B. 2021;9(18):3838-3855. doi:10.1039/d1tb00029b(IF:6.331)
[167] Zhang YQ, Lin HA, Pan QC, et al. A trade-off between antifouling and the electrochemical stabilities of PEDOTs. J Mater Chem B. 2021;9(11):2717-2726. doi:10.1039/d0tb01797c(IF:6.331)
[168] Ou Y, Yan M, Gao G, Wang W, Lu Q, Chen J. Cinnamaldehyde protects against ligature-induced periodontitis through the inhibition of microbial accumulation and inflammatory responses of host immune cells [published online ahead of print, 2022 Jul 6]. Food Funct. 2022;10.1039/d2fo00963c. doi:10.1039/d2fo00963c(IF:6.317)
[169] Chen X, Deng T, Huo T, Dong F, Deng J. MiR-140-5p/TLR4 /NF-κB signaling pathway: Crucial role in inflammatory response in 16HBE cells induced by dust fall PM2.5. Ecotoxicol Environ Saf. 2021;208:111414. doi:10.1016/j.ecoenv.2020.111414(IF:6.291)
[170] Li T, Zhou J, Wang L, et al. Photo-Fenton-like Metal-Protein Self-Assemblies as Multifunctional Tumor Theranostic Agent. Adv Healthc Mater. 2019;8(15):e1900192. doi:10.1002/adhm.201900192(IF:6.270)
[171] Liu C, Qiao W, Cao H, et al. A riboflavin-ultraviolet light A-crosslinked decellularized heart valve for improved biomechanical properties, stability, and biocompatibility. Biomater Sci. 2020;8(9):2549-2563. doi:10.1039/c9bm01956a(IF:6.183)
[172] Yi H , Zhou X , Zhou C , Yang Q , Jia N . Liquid exfoliated biocompatible WS2@BSA nanosheets with enhanced theranostic capacity. Biomater Sci. 2021;9(1):148-156. doi:10.1039/d0bm00991a(IF:6.183)
[173] Yang J, Song X, Feng Y, et al. Natural ingredients-derived antioxidants attenuate H2O2-induced oxidative stress and have chondroprotective effects on human osteoarthritic chondrocytes via Keap1/Nrf2 pathway. Free Radic Biol Med. 2020;152:854-864. doi:10.1016/j.freeradbiomed.2020.01.185(IF:6.170)
[174] Yu SY, Zhang JH, Li KX, et al. A Novel Chemical Binding Primer to Improve Dentin Bonding Durability. J Dent Res. 2022;101(7):777-784. doi:10.1177/00220345221074910(IF:6.116)
[175] Wang X, Song X, Li T, et al. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. Am J Sports Med. 2019;47(10):2316-2326. doi:10.1177/0363546519856355(IF:6.093)
[176] Fu Z, Song X, Guo L, Yang L, Chen C. Effects of Conditioned Medium From Osteoarthritic Cartilage Fragments on Donor-Matched Infrapatellar Fat Pad-Derived Mesenchymal Stromal Cells. Am J Sports Med. 2019;47(12):2927-2936. doi:10.1177/0363546519869241(IF:6.093)
[177] Chen X, Qian H, Qiao H, et al. Tumor-Adhesive and pH-Degradable Microgels by Microfluidics and Photo-Cross-Linking for Efficient Antiangiogenesis and Enhanced Cancer Chemotherapy. Biomacromolecules. 2020;21(3):1285-1294. doi:10.1021/acs.biomac.0c00049(IF:6.092)
[178] Qi X, Su T, Tong X, et al. Facile formation of salecan/agarose hydrogels with tunable structural properties for cell culture. Carbohydr Polym. 2019;224:115208. doi:10.1016/j.carbpol.2019.115208(IF:6.044)
[179] Huang L, Du X, Fan S, et al. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr Polym. 2019;221:146-156. doi:10.1016/j.carbpol.2019.05.080(IF:6.044)
[180] Xu H, Wu S, Wei P, et al. Versatile synthesis, characterization and properties of β-chitin derivatives from aqueous KOH/urea solution. Carbohydr Polym. 2020;227:115345. doi:10.1016/j.carbpol.2019.115345(IF:6.044)
[181] Li B, Zheng L, Ye J, et al. CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways [published online ahead of print, 2022 Jun 10]. Sci China Life Sci. 2022;10.1007/s11427-022-2108-x. doi:10.1007/s11427-022-2108-x(IF:6.038)
[182] Zhang T, Zhang H, Zhou W, et al. One-Step Generation and Purification of Cell-Encapsulated Hydrogel Microsphere With an Easily Assembled Microfluidic Device. Front Bioeng Biotechnol. 2022;9:816089. Published 2022 Jan 28. doi:10.3389/fbioe.2021.816089(IF:5.890)
[183] Lv J, Jin W, Liu W, et al. Selective Laser Melting Fabrication of Porous Ti6Al4V Scaffolds With Triply Periodic Minimal Surface Architectures: Structural Features, Cytocompatibility, and Osteogenesis. Front Bioeng Biotechnol. 2022;10:899531. Published 2022 May 26. doi:10.3389/fbioe.2022.899531(IF:5.890)
[184] Zhong Y, Bejjanki NK, Miao X, et al. Synthesis and Photothermal Effects of Intracellular Aggregating Nanodrugs Targeting Nasopharyngeal Carcinoma. Front Bioeng Biotechnol. 2021;9:730925. Published 2021 Sep 16. doi:10.3389/fbioe.2021.730925(IF:5.890)
[185] Zhong Y, Wang K, Zhang Y, et al. Ocular Wnt/β-Catenin Pathway Inhibitor XAV939-Loaded Liposomes for Treating Alkali-Burned Corneal Wound and Neovascularization. Front Bioeng Biotechnol. 2021;9:753879. Published 2021 Oct 26. doi:10.3389/fbioe.2021.753879(IF:5.890)
[186] Hayat U, Raza A, Wang HJ, Wang JY. Preparation of ciprofloxacin loaded zein conduits with good mechanical properties and antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2020;111:110766. doi:10.1016/j.msec.2020.110766(IF:5.880)
[187] Xu Q, Zhang T, Wang Q, et al. Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. Int J Pharm. 2018;552(1-2):443-452. doi:10.1016/j.ijpharm.2018.10.023(IF:5.875)
[188] Jiao Y, Gao Y, Wang J, An H, Li YX, Zhang X. Intelligent porphyrin nano-delivery system for photostimulated and targeted inhibition of angiogenesis. Int J Pharm. 2022;621:121805. doi:10.1016/j.ijpharm.2022.121805(IF:5.875)
[189] Kang H, Dong Y, Peng R, et al. Inhibition of IRE1 suppresses the catabolic effect of IL-1β on nucleus pulposus cell and prevents intervertebral disc degeneration in vivo. Biochem Pharmacol. 2022;197:114932. doi:10.1016/j.bcp.2022.114932(IF:5.858)
[190] Yu RY , Xing L , Cui PF , et al. Regulating the Golgi apparatus by co-delivery of a COX-2 inhibitor and Brefeldin A for suppression of tumor metastasis. Biomater Sci. 2018;6(8):2144-2155. doi:10.1039/c8bm00381e(IF:5.831)
[191] Wang S , Ren W , Wang J , et al. Black TiO2-based nanoprobes for T1-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells. Biomater Sci. 2018;6(8):2209-2218. doi:10.1039/c8bm00454d(IF:5.831)
[192] Jia Y , Sheng Z , Hu D , et al. Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy [published correction appears in Biomater Sci. 2021 Jun 4;9(11):4211]. Biomater Sci. 2018;6(6):1546-1555. doi:10.1039/c8bm00256h(IF:5.831)
[193] Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY). 2021;13(21):24171-24191. doi:10.18632/aging.203672(IF:5.682)
[194] Qiao H, Jia J, Chen W, Di B, Scherman OA, Hu C. Magnetic Regulation of Thermo-Chemotherapy from a Cucurbit[7]uril-Crosslinked Hybrid Hydrogel. Adv Healthc Mater. 2019;8(2):e1801458. doi:10.1002/adhm.201801458(IF:5.609)
[195] Zhou W, Zhao X, Shi X, Chen C, Cao Y, Liu J. Constructing Tissue-Engineered Dressing Membranes with Adipose-Derived Stem Cells and Acellular Dermal Matrix for Diabetic Wound Healing: A Comparative Study of Hypoxia- or Normoxia-Culture Modes. Stem Cells Int. 2022;2022:2976185. Published 2022 May 5. doi:10.1155/2022/2976185(IF:5.443)
[196] Xu XX, Zheng G, Tang SK, Liu HX, Hu YZ, Shang P. Theaflavin protects chondrocytes against apoptosis and senescence via regulating Nrf2 and ameliorates murine osteoarthritis. Food Funct. 2021;12(4):1590-1602. doi:10.1039/d0fo02038a(IF:5.396)
[197] Lu F, Li Z, Kang Y, Su Z, Yu R, Zhang S. Black phosphorus quantum dots encapsulated in anionic waterborne polyurethane nanoparticles for enhancing stability and reactive oxygen species generation for cancer PDT/PTT therapy. J Mater Chem B. 2020;8(46):10650-10661. doi:10.1039/d0tb02101f(IF:5.344)
[198] Liu X, Liu J, Chen S, et al. Dual-path modulation of hydrogen peroxide to ameliorate hypoxia for enhancing photodynamic/starvation synergistic therapy. J Mater Chem B. 2020;8(43):9933-9942. doi:10.1039/d0tb01556c(IF:5.344)
[199] Liang S, Sun M, Lu Y, et al. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B. 2020;8(36):8368-8382. doi:10.1039/d0tb01391a(IF:5.344)
[200] Han H, Yin Q, Tang X, et al. Development of mucoadhesive cationic polypeptide micelles for sustained cabozantinib release and inhibition of corneal neovascularization. J Mater Chem B. 2020;8(23):5143-5154. doi:10.1039/d0tb00874e(IF:5.344)
[201] Du P, Yan J, Long S, et al. Tumor microenvironment and NIR laser dual-responsive release of berberine 9-O-pyrazole alkyl derivative loaded in graphene oxide nanosheets for chemo-photothermal synergetic cancer therapy. J Mater Chem B. 2020;8(18):4046-4055. doi:10.1039/d0tb00489h(IF:5.344)
[202] Sun N, Yin S, Lu Y, Zhang W, Jiang X. Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. J Mater Chem B. 2020;8(26):5606-5619. doi:10.1039/d0tb00697a(IF:5.344)
[203] Zheng A, Wu D, Fan M, et al. Injectable zwitterionic thermosensitive hydrogels with low-protein adsorption and combined effect of photothermal-chemotherapy. J Mater Chem B. 2020;8(46):10637-10649. doi:10.1039/d0tb01763a(IF:5.344)
[204] Zhang BY, Xu P, Luo Q, Song GB. Proliferation and tenogenic differentiation of bone marrow mesenchymal stem cells in a porous collagen sponge scaffold. World J Stem Cells. 2021;13(1):115-127. doi:10.4252/wjsc.v13.i1.115(IF:5.326)
[205] Shen J, Dong J, Shao F, et al. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine (Lond). 2022;17(9):591-605. doi:10.2217/nnm-2022-0030(IF:5.307)
[206] Huang R , Wang J , Chen H , et al. The topography of fibrous scaffolds modulates the paracrine function of Ad-MSCs in the regeneration of skin tissues. Biomater Sci. 2019;7(10):4248-4259. doi:10.1039/c9bm00939f(IF:5.251)
[207] Gao Y , Zhang C , Chang J , et al. Enzyme-instructed self-assembly of a novel histone deacetylase inhibitor with enhanced selectivity and anticancer efficiency. Biomater Sci. 2019;7(4):1477-1485. doi:10.1039/c8bm01422a(IF:5.251)
[208] Yuan Z, Zhang K, Jiao X, et al. A controllable local drug delivery system based on porous fibers for synergistic treatment of melanoma and promoting wound healing. Biomater Sci. 2019;7(12):5084-5096. doi:10.1039/c9bm01045a(IF:5.251)
[209] Dan Q, Hu D, Ge Y, et al. Ultrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapy. Biomater Sci. 2020;8(3):973-987. doi:10.1039/c9bm01742a(IF:5.251)
[210] Cong Z, Li D, Lv X, et al. α2A-adrenoceptor deficiency attenuates lipopolysaccharide-induced lung injury by increasing norepinephrine levels and inhibiting alveolar macrophage activation in acute respiratory distress syndrome. Clin Sci (Lond). 2020;134(14):1957-1971. doi:10.1042/CS20200586(IF:5.223)
[211] Yang Y, Lin Q, Zhou C, et al. A Testis-Derived Hydrogel as an Efficient Feeder-Free Culture Platform to Promote Mouse Spermatogonial Stem Cell Proliferation and Differentiation. Front Cell Dev Biol. 2020;8:250. Published 2020 May 19. doi:10.3389/fcell.2020.00250(IF:5.186)
[212] Tan H, Hou N, Liu Y, et al. CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomedicine. 2020;27:102192. doi:10.1016/j.nano.2020.102192(IF:5.182)
[213] Tan L, Zhou X, Wu K, Yang D, Jiao Y, Zhou C. Tannic acid/CaII anchored on the surface of chitin nanofiber sponge by layer-by-layer deposition: Integrating effective antibacterial and hemostatic performance. Int J Biol Macromol. 2020;159:304-315. doi:10.1016/j.ijbiomac.2020.05.098(IF:5.162)
[214] Su T, Zhao W, Wu L, Dong W, Qi X. Facile fabrication of functional hydrogels consisting of pullulan and polydopamine fibers for drug delivery. Int J Biol Macromol. 2020;163:366-374. doi:10.1016/j.ijbiomac.2020.06.283(IF:5.162)
[215] Li T, Yang J, Weng C, et al. Intra-articular injection of anti-inflammatory peptide-loaded glycol chitosan/fucoidan nanogels to inhibit inflammation and attenuate osteoarthritis progression. Int J Biol Macromol. 2021;170:469-478. doi:10.1016/j.ijbiomac.2020.12.158(IF:5.162)
[216] Zou Y, Xie R, Hu E, et al. Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. Int J Biol Macromol. 2020;148:921-931. doi:10.1016/j.ijbiomac.2020.01.190(IF:5.162)
[217] Zheng A, Cao L, Liu Y, et al. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydr Polym. 2018;199:244-255. doi:10.1016/j.carbpol.2018.06.093(IF:5.158)
[218] Li Q, Wang Z. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int J Nanomedicine. 2020;15:4659-4676. Published 2020 Jun 30. doi:10.2147/IJN.S245608(IF:5.115)
[219] Li X, Wang M, Zhang W, et al. A Magnesium-Incorporated Nanoporous Titanium Coating for Rapid Osseointegration. Int J Nanomedicine. 2020;15:6593-6603. Published 2020 Sep 8. doi:10.2147/IJN.S255486(IF:5.115)
[220] Pei W, Huang B, Chen S, Wang L, Xu Y, Niu C. Platelet-Mimicking Drug Delivery Nanoparticles for Enhanced Chemo-Photothermal Therapy of Breast Cancer. Int J Nanomedicine. 2020;15:10151-10167. Published 2020 Dec 14. doi:10.2147/IJN.S285952(IF:5.115)
[221] Dong K, Wang X, Shen Y, et al. Maintaining Inducibility of Dermal Follicle Cells on Silk Fibroin/Sodium Alginate Scaffold for Enhanced Hair Follicle Regeneration. Biology (Basel). 2021;10(4):269. Published 2021 Mar 26. doi:10.3390/biology10040269(IF:5.079)
[222] Ganbold T, Bao Q, Xiao H, et al. Peptidomimetic Lipid-Nanoparticle-Mediated Knockdown of TLR4 in CNS Protects against Cerebral Ischemia/Reperfusion Injury in Mice. Nanomaterials (Basel). 2022;12(12):2072. Published 2022 Jun 16. doi:10.3390/nano12122072(IF:5.076)
[223] Feng J, Xu Z, Dong P, et al. Stimuli-responsive multifunctional metal-organic framework nanoparticles for enhanced chemo-photothermal therapy. J Mater Chem B. 2019;7(6):994-1004. doi:10.1039/c8tb02815j(IF:5.047)
[224] Xu H, Zhang L, Zhang H, Luo J, Gao X. Green Fabrication of Chitin/Chitosan Composite Hydrogels and Their Potential Applications. Macromol Biosci. 2021;21(3):e2000389. doi:10.1002/mabi.202000389(IF:4.979)
[225] Xun X, Li Y, Zhu X, et al. Fabrication of Robust, Shape Recoverable, Macroporous Bacterial Cellulose Scaffolds for Cartilage Tissue Engineering. Macromol Biosci. 2021;21(11):e2100167. doi:10.1002/mabi.202100167(IF:4.979)
[226] Chen M, Zhao F, Li Y, Wang M, Chen X, Lei B. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020;106:110153. doi:10.1016/j.msec.2019.110153(IF:4.959)
[227] Jiang Y, Guo Z, Fang J, et al. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer. Mater Sci Eng C Mater Biol Appl. 2020;107:110224. doi:10.1016/j.msec.2019.110224(IF:4.959)
[228] Liu Y, Wen N, Li K, et al. Photolytic Removal of Red Blood Cell Membranes Camouflaged on Nanoparticles for Enhanced Cellular Uptake and Combined Chemo-Photodynamic Inhibition of Cancer Cells. Mol Pharm. 2022;19(3):805-818. doi:10.1021/acs.molpharmaceut.1c00720(IF:4.939)
[229] Gu L, Li T, Song X, et al. Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering. Regen Biomater. 2020;7(2):195-202. doi:10.1093/rb/rbz050(IF:4.882)
[230] Cai S, Yan J, Xiong H, et al. Aptamer-functionalized molybdenum disulfide nanosheets for tumor cell targeting and lysosomal acidic environment/NIR laser responsive drug delivery to realize synergetic chemo-photothermal therapeutic effects. Int J Pharm. 2020;590:119948. doi:10.1016/j.ijpharm.2020.119948(IF:4.845)
[231] Chen H, Lan G, Ran L, et al. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr Polym. 2018;183:70-80. doi:10.1016/j.carbpol.2017.11.029(IF:4.811)
[232] Erdene-Ochir T, Ganbold T, Zandan J, Han S, Borjihan G, Baigude H. Alkylation enhances biocompatibility and siRNA delivery efficiency of cationic curdlan nanoparticles. Int J Biol Macromol. 2020;143:118-125. doi:10.1016/j.ijbiomac.2019.12.048(IF:4.784)
[233] Li T, Song X, Weng C, et al. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Int J Biol Macromol. 2019;137:382-391. doi:10.1016/j.ijbiomac.2019.06.245(IF:4.784)
[234] Wang F , Wang Z , Li Y , Zhao L , Wen Y , Zhang X . Cap-free dual stimuli-responsive biodegradable nanocarrier for controlled drug release and chemo-photothermal therapy. J Mater Chem B. 2018;6(48):8188-8195. doi:10.1039/c8tb02698j(IF:4.776)
[235] Guo Z, Wang Y, Tan T, Ji Y, Hu J, Zhang Y. Antimicrobial d-Peptide Hydrogels. ACS Biomater Sci Eng. 2021;7(4):1703-1712. doi:10.1021/acsbiomaterials.1c00187(IF:4.749)
[236] Zhuang A, Pan Q, Qian Y, et al. Transparent Conductive Silk Film with a PEDOT-OH Nano Layer as an Electroactive Cell Interface. ACS Biomater Sci Eng. 2021;7(3):1202-1215. doi:10.1021/acsbiomaterials.0c01665(IF:4.749)
[237] Xie J, Zhou Z, Ma S, et al. Facile Fabrication of BiF3: Ln (Ln = Gd, Yb, Er)@PVP Nanoparticles for High-Efficiency Computed Tomography Imaging. Nanoscale Res Lett. 2021;16(1):131. Published 2021 Aug 14. doi:10.1186/s11671-021-03591-2(IF:4.703)
[238] Wang K, Hu S, Wang B, Wang J, Wang X, Xu C. Genistein protects intervertebral discs from degeneration via Nrf2-mediated antioxidant defense system: An in vitro and in vivo study [published online ahead of print, 2019 Feb 18]. J Cell Physiol. 2019;10.1002/jcp.28301. doi:10.1002/jcp.28301(IF:4.522)
[239] Jiao D, Cao L, Liu Y, Wu J, Zheng A, Jiang X. Synergistic Osteogenesis of Biocompatible Reduced Graphene Oxide with Methyl Vanillate in BMSCs. ACS Biomater Sci Eng. 2019;5(4):1920-1936. doi:10.1021/acsbiomaterials.8b01264(IF:4.511)
[240] Zhou W, Huang O, Gan Y, Li Q, Zhou T, Xi W. Effect of titanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs. Artif Cells Nanomed Biotechnol. 2019;47(1):290-299. doi:10.1080/21691401.2018.1553784(IF:4.462)
[241] Yang G, Yang H, Shi L, et al. Enhancing Corrosion Resistance, Osteoinduction, and Antibacterial Properties by Zn/Sr Additional Surface Modification of Magnesium Alloy. ACS Biomater Sci Eng. 2018;4(12):4289-4298. doi:10.1021/acsbiomaterials.8b00781(IF:4.432)
[242] Zhang Y, Wang K, Dong K, Cui N, Lu T, Han Y. Enhanced osteogenic differentiation of osteoblasts on CaTiO3 nanotube film. Colloids Surf B Biointerfaces. 2020;187:110773. doi:10.1016/j.colsurfb.2020.110773(IF:4.389)
[243] Liu M, Fu M, Yang X, et al. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf B Biointerfaces. 2020;196:111284. doi:10.1016/j.colsurfb.2020.111284(IF:4.389)
[244] Hong L, Wang JL, Geng JX, et al. Rational design of an oxygen-enriching nanoemulsion for enhanced near-infrared laser activatable photodynamic therapy against hypoxic tumors. Colloids Surf B Biointerfaces. 2021;198:111500. doi:10.1016/j.colsurfb.2020.111500(IF:4.389)
[245] Li M, Shi T, Yao D, Yue X, Wang H, Liu K. High-cytocompatible semi-IPN bio-ink with wide molecular weight distribution for extrusion 3D bioprinting. Sci Rep. 2022;12(1):6349. Published 2022 Apr 15. doi:10.1038/s41598-022-10338-1(IF:4.380)
[246] Wang J, Zhang Z, Li J, et al. Tranexamic acid protects against implant-associated infection by reducing biofilm formation. Sci Rep. 2022;12(1):4840. Published 2022 Mar 22. doi:10.1038/s41598-022-08948-w(IF:4.380)
[247] Yang X, Fan B, Gao W, et al. Enhanced endosomal escape by photothermal activation for improved small interfering RNA delivery and antitumor effect. Int J Nanomedicine. 2018;13:4333-4344. Published 2018 Jul 23. doi:10.2147/IJN.S161908(IF:4.370)
[248] Zhu L, Gao D, Xie L, Dai Y, Zhao Q. NIR II-Excited and pH-Responsive Ultrasmall Nanoplatform for Deep Optical Tissue and Drug Delivery Penetration and Effective Cancer Chemophototherapy. Mol Pharm. 2020;17(10):3720-3729. doi:10.1021/acs.molpharmaceut.0c00404(IF:4.321)
[249] Yu K, Lu F, Li Q, et al. In situ assembly of Ag nanoparticles (AgNPs) on porous silkworm cocoon-based wound film: enhanced antimicrobial and wound healing activity [published correction appears in Sci Rep. 2018 Jan 22;8(1):1566]. Sci Rep. 2017;7(1):2107. Published 2017 May 18. doi:10.1038/s41598-017-02270-6(IF:4.259)
[250] Huang L, Yuan W, Hong Y, et al. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Cellulose (Lond). 2021;28(1):241-257. doi:10.1007/s10570-020-03526-7(IF:4.210)
[251] Zhang Q, Wu L, Liu S, et al. Targeted nanobody complex enhanced photodynamic therapy for lung cancer by overcoming tumor microenvironment. Cancer Cell Int. 2020;20(1):570. Published 2020 Nov 27. doi:10.1186/s12935-020-01613-0(IF:4.175)
[252] Yang X, Wen Y, Wu A, et al. Polyglycerol mediated covalent construction of magnetic mesoporous silica nanohybrid with aqueous dispersibility for drug delivery. Mater Sci Eng C Mater Biol Appl. 2017;80:517-525. doi:10.1016/j.msec.2017.06.022(IF:4.164)
[253] Yang G, Yao Y, Wang X. Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2018;83:1-8. doi:10.1016/j.msec.2017.07.057(IF:4.164)
[254] Rong L, Yang D, Wang B, et al. Durable and Effective Antibacterial Cotton Fabric Collaborated with Polypropylene Tissue Mesh for Abdominal Wall Defect Repair. ACS Biomater Sci Eng. 2020;6(7):3868-3877. doi:10.1021/acsbiomaterials.0c00626(IF:4.152)
[255] Liu N, Fu D, Yang J, et al. Asiatic acid attenuates hypertrophic and fibrotic differentiation of articular chondrocytes via AMPK/PI3K/AKT signaling pathway. Arthritis Res Ther. 2020;22(1):112. Published 2020 May 12. doi:10.1186/s13075-020-02193-0(IF:4.103)
[256] Zhong Y, Yu C, Qin W. LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p /ROCK1. Cancer Gene Ther. 2019;26(7-8):234-247. doi:10.1038/s41417-018-0067-5(IF:4.044)
[257] Zhong Y, Li X, Du X, et al. The S-nitrosylation of parkin attenuated the ubiquitination of divalent metal transporter 1 in MPP+-treated SH-SY5Y cells. Sci Rep.