国际期刊 |转染试剂与反转定量产品登Science

结核病(tuberculosis,TB)是由结核分枝杆菌(M. tuberculosis,Mtb)感染引起的一类重大慢性传染病。据世界卫生组织报道,2020年全球有近990万新发TB患者,并有约151万人因Mtb感染导致死亡。2022年10月14日,中国科学院微生物研究所刘翠华团队与北京师范大学邱小波团队合作,在Science期刊发表了题为“A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin”的研究论文(IF=63.714)。该研究揭示了结核分枝杆菌利用脂磷酸酶PtpB挟持宿主泛素进而拮抗GSDMD介导的细胞焦亡的病原免疫逃逸新机制,提供了基于病原-宿主互作界面的结核病治疗新思路和潜在新靶标

 

 
刘翠华团队长期致力于Mtb与宿主互作机制方面的研究,在Nature Immunology(2015)、Nature Communications(2017、2019)、Autophagy(2021)、EMBO Report(2021)、Cellular & Molecular Immunology(2018、2019)等上已经发表了一系列的研究成果,揭示了一系列病原菌与宿主相互博弈的动态过程及分子机制,为TB防治提供了多种新思路和潜在新靶点。

 

在本次研究中,团队选择了翌圣的转染试剂与反转定量产品用于相关基因的研究:

 
目前转染试剂系列与反转定量系列的产品已经荣登《Nature》、《Cell》、《Science》等多个顶级期刊,获得科研大牛们认可!

 

IF55分!翌圣转染试剂助力高分文章

国际期刊 | 翌圣qPCR荣登高分杂志!circVAMP3或成肝细胞癌治疗靶点

翌圣明星CP--转染试剂与PCR产品又登《Cell》期刊

 

转染试剂系列(滑动查看)

 

[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF=68.164)

[2] Luo J, Yang Q, Zhang X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022;185(6):980-994.e15. doi:10.1016/j.cell.2022.02.010 (IF=66.85)

[3] Zhou J, Chen P, Wang H, et al. Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition. Mol Ther. 2022;30(1):244-255. doi:10.1016/j.ymthe. 2021.10.010 (IF=12.910)

[4] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817 (IF=17.694)

[5] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684 (IF=11.492)

[6] Qin J, Cai Y, Xu Z, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun. 2022;13(1):300. Published 2022 Jan 13. doi:10.1038/s41467-022-27975-9 (IF=17.681)

[7] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF=12.658)

[8] Yang X, Wang X, Xu Z, et al. Molecular mechanism of allosteric modulation for the cannabinoid receptor CB1 [published online ahead of print, 2022 May 30]. Nat Chem Biol. 2022;10.1038/s41589-022-01038-y. doi:10.1038/s41589-022-01038-y (IF=16.174)

[9] Xie F, Su P, Pan T, et al. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv Mater. 2021;33(49):e2103471. doi:10.1002/adma. 202103471 (IF=30.849)

[10] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626 (IF=16.9)

[11] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x (IF=27.403)

[12] Dai L, Dai Y, Han J, et al. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Mol Cell. 2021;81(13):2765-2777.e6. doi:10.1016/j.molcel.2021.05.010 (IF=17.97)

[13] Zhang K, Wang A, Zhong K, et al. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron. 2021;109(12):1949-1962.e6. doi:10.1016/j.neuron.2021.04.023 (IF=17.17)

[14] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626 (IF=16.9)

[15] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1 (IF=14.92)

[17] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1 (IF=11.161)

[18] Zhou Y, Li D, Luo J, et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor mediate the cellular entry of Clostridium novyi alpha-toxin. Cell Res. 2021;31(8):935-938. doi:10.1038/s41422-021-00510-z (IF=25.617)

[19] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874 (IF=15.84)

[20] Yan F, Huang C, Wang X, et al. Threonine ADP-Ribosylation of Ubiquitin by a Bacterial Effector Family Blocks Host Ubiquitination. Mol Cell. 2020;78(4):641-652.e9. doi:10.1016/j.molcel.2020.03.016 (IF=17.97)

[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0 (IF=14.911)

[22] Yang X, Wang H, Xie E, et al. Rewiring ERBB3 and ERK signaling confers resistance to FGFR1 inhibition in gastrointestinal cancer harbored an ERBB3-E928G mutation. Protein Cell. 2020;11(12):915-920. doi:10.1007/s13238-020-00749-z (IF=14.872)

[23] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5 (IF=13.490)

[24] Hao H, Hu S, Chen H, et al. Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction: Implications for Cardiovascular Drug Discovery. Circulation. 2017;135(13):1253-1264. doi:10.1161/CIRCULATIONAHA.116.023027 (IF=18.881)

 
 
qPCR系列(滑动查看)

[1] Seki T, Yang Y, Sun X, et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature. (IF 69.504)

[2] Chen P, Wang W, Liu R, et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature. 2022. (IF 69.504)

[3] Yu Q, Liu S, Yu L, et al. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat Biotechnol. 2021. (IF 68.164)

[4] Dong W, Zhu Y, Chang H, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature. 2021. (IF 69.504)

[5] Bi X, Wang K, Yang L, et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell. 2021. (IF 66.850)

[6] Liu S, Hua Y, Wang J, et al. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell. 2021.(IF 66.850)

[7] Lu XY, Shi XJ, Hu A, et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature. 2020.(IF 69.504)

[8] Liu CX, Li X, Nan F, et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell. 2019. (IF 66.850)

[9] Han X, Wang R, Zhou Y, et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell. 2018.(IF 66.850)

 
科研路上高分paper发不停,小翌助您过关斩将,每天都出好数据。
 

转染试剂产品目录

 

应用场景

名称

货号

规格

细胞类型:贴壁/悬浮
核酸类型:DNAsiRNA

Hieff Trans®脂质体核酸转染试剂

40802ES02

0.5 mL

40802ES03

1.0 mL

40802ES08

5×1mL

细胞类型:贴壁/悬浮
核酸类型:DNA

磷酸钙法细胞转染试剂

40803ES70

200 T

用途:病毒感染、DNA转染

聚凝胺(10 mg/ml

40804ES76

500 μL

40804ES86

5×500 μL

细胞类型:悬浮
核酸类型:DNAsiRNA

Hieff Trans® 悬浮细胞专用脂质体核酸转染试剂

40805ES02

0.5 mL

40805ES03

1.0 mL

40805ES08

5×1 mL

细胞类型:贴壁/悬浮
核酸类型:siRNAmiRNA

Hieff Trans® siRNA/miRNA体外转染试剂

40806ES01

0.1 mL

40806ES02

0.5 mL

40806ES03

1.0 mL

细胞类型:贴壁/悬浮
核酸类型:DNAsiRNAmiRNA

Hieff Trans® 通用型转染试剂

40808ES02

0.5 mL

40808ES03

1 mL

40808ES08

5×1 mL

细胞类型:贴壁/悬浮
核酸类型:mRNA

Hieff Trans® mRNA转染试剂

40809ES01

0.1 mL

40809ES03

1 mL

细胞类型:贴壁/悬浮
核酸类型:DNA

PEI转染试剂MW25000

40815ES03

1 g

40815ES08

5×1 g

细胞类型:贴壁/悬浮
核酸类型:DNA

线性PEI转染试剂(速溶型)MW40000

40816ES02

100 mg

40816ES03

1 g

细胞类型:293
核酸类型:DNA
用途:AAV/LV载体研发与工艺开发

Hieff Trans® PEI转染试剂

40820ES04

1.5 mL

40820ES10

10 mL

40820ES60

100 mL

点击产品名称查看详情

 

 

反转录定量系列产品目录

 

方法

分类

产品名称

货号

反转录

一步完成gDNA去除与反转录

Hifair® V one-step RT-gDNA digestion SuperMix for qPCR

11142ES

高灵敏度预混液(gDNA去除步骤)

Hifair® III 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)

11141ES

高灵敏度试剂盒 (gDNA去除步骤)

Hifair® III 1st Strand cDNA Synthesis Kit (gDNA digester plus)

11139ES

miRNA反转录试剂盒(加A法)

Hifair® miRNA 1st Strand cDNA Synthesis Kit( A )

11148ES

快速反转录试剂盒(gDNA去除步骤)

Hifair® AdvanceFast 1st Strand cDNA Synthesis Kit

11149ES

qPCR染料法

高灵敏通用型qPCR预混液(染料法)

Hieff UNICON® Universal Blue qPCR SYBR Master Mix

11184ES

高灵敏型qPCR预混液(染料法)

Hieff UNICON® qPCR SYBR Green Master Mix (No Rox)

11198ES

Hieff UNICON® qPCR SYBR Green Master Mix (Low Rox)

11199ES

Hieff UNICON® qPCR SYBR Green Master Mix (High Rox)

11200ES

普通型qPCR预混液(染料法)

Hieff® qPCR SYBR Green Master Mix (No Rox)

11201ES

Hieff® qPCR SYBR Green Master Mix (Low Rox)

11202ES

Hieff® qPCR SYBR Green Master Mix (High Rox)

11203ES

miRNA qPCRA

Hieff® miRNA Universal  qPCR SYBR Master Mix(加A法)

11171ES

miRNA qPCR茎环法

Hieff® miRNA Universal  qPCR SYBR Master Mix(茎环法)

11170ES

RNA一步法RT-qPCR(染料法)

Hifair® III One Step RT-qPCR SYBR Green Kit

11143ES

点击产品名称查看详情

 

400-6111-883