产品描述
碱性磷酸酶(Alkaline Phosphatase, AP/ALP/AKP/ALKP/ALPase/Alk Phos)是一类水解酶,其通过水解磷酸单酯的作用将底物分子上的磷酸基团除去掉并生成磷酸根离子和自由的羟基。在碱性条件下以核苷酸、蛋白质和生物碱等作为去磷酸化作用的底物。该酶是一组同功酶的统称,如小牛肠碱性磷酸酶(Calf Intestinal AlkalinePhosphatase, CIAP/CIP)被广泛用于抗体标记并最终用于蛋白和核酸的检测等,也常用于DNA或RNA 5’和3’末端的去磷酸化(去单磷酸化)等。
BCIP/NBT是碱性磷酸酶的常用底物,在碱性磷酸酶的作用下BCIP会被水解,水解产物会和NBT发生反应形成不溶性的深蓝色至蓝紫色的NBT-formazan物质。
本试剂盒可用于细胞或组织的碱性磷酸酶显色,包括诱导多功能干细胞iPS的鉴定,也可以用于结合有碱性磷酸酶的膜的Western显色检测等。
产品组分
组分编号 |
组分名称 |
包装详情 |
40749-A |
碱性磷酸酶染色缓冲液 |
100 mL |
40749-B |
碱性磷酸酶染色液BCIP(300×) |
350 µL |
40749-C |
碱性磷酸酶染色液NBT(150×) |
700 µL |
运输和保存方法
冰袋运输。4℃保存,有效期1年,染色液BCIP和染色液NBT需避光保藏。
注意事项
1)本产品仅限科学研究。
2)BCIP对人体有刺激性,NBT对人体有害,请注意适当防护。
3)为了您的安全和健康,请穿实验服并戴一次性手套操作。
4)本产品仅作科研用途!
染色步骤
1、用合适的洗涤液对于组织切片或细胞样品或膜在与碱性磷酸酶标记的抗体或探针孵育后,洗涤3-5次,每次3-5 min。对于检测内源性碱性磷酸酶的组织或细胞样品,在固定后,也用合适的洗涤液洗涤3-5次,每次3-5 min。
2、按照 缓冲液:染色液BCIP:染色液NBT=3 mL: 10 µL:20 µL的比例配制适量体积的AP染色工作液。
3、在最后一次洗涤后去除洗涤液,加入适量AP染色工作液。
4、室温避光孵育5-30 min或更长时间(最长达24 h),直至显色达到预期深浅效果。
5、去除AP染色工作液,用蒸馏水洗涤1-2次即可终止显色反应。
6、对于组织切片或细胞样品,在显色反应终止后如有必要可用中性红染色液(neutral red staining solution)染色观察。对于膜样品,显色反应终止后可至室温晾干避光保存。
Q: 使用碱性磷酸酶染色试剂盒(40749ES60),细胞,本身就是高表达碱性磷酸酶,做了处理之后可能就稍微低表达一些,拍出来的图,是细胞一整个轮廓是染色的?
A: 颜色深浅可以反应碱性磷酸酶的多少,但是微量差别可能肉眼无法观察,可以进行颜色灰度值测定(此方法可能会存在结果不稳定问题),可参考 WB 条带的计算方法。
Q:这个可以染胚胎干细胞吗?
A: 根据说明书中是可以的。本试剂盒可用于细胞或组织的碱性磷酸酶显色,包括诱导多功能干细胞iPS 的鉴定,也可以用于结合有碱性磷酸酶的膜的 Western 显色检测等。
Q:这个可以用于判断细胞活性不?
A: 不能用于细胞活性检测,本试剂盒主要用于细胞或组织的碱性磷酸酯酶显色包括诱导多功能干细胞 iPS 的鉴定,也可以用于 Western 等结合有碱性磷酸酯酶的膜的显色检测。同时也可以用于细胞或组织内源性的碱性磷酸酯酶显色。 检测细胞活性老师可以用cck-8 等试剂盒。
Q: 使用 24 孔板做成骨细胞分化后的碱性磷酸酶染色,请问可以使用本产品吗?
A: 可以的。
Q: 配好的碱性磷酸酶工作液可以重复是使用么,工作液如何保存,保存时间多久?
A: BCIP/NBT 染色工作液需现配先用,不能重复使用。
[1] Wang J, Yu H, Ma Q, et al. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell. 2021;28(10):1868-1883.e11. doi:10.1016/j.stem.2021.04.023(IF:24.633)
[2] Li R, Zhou C, Chen J, et al. Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration. Bioact Mater. 2022;18:267-283. Published 2022 Feb 25. doi:10.1016/j.bioactmat.2022.02.011(IF:14.593)
[3] Deng L, Ren R, Liu Z, et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun. 2019;10(1):3329. Published 2019 Jul 26. doi:10.1038/s41467-019-10831-8(IF:11.878)
[4] Zou M, Sun J, Xiang Z. Induction of M2-Type Macrophage Differentiation for Bone Defect Repair via an Interpenetration Network Hydrogel with a GO-Based Controlled Release System. Adv Healthc Mater. 2021;10(6):e2001502. doi:10.1002/adhm.202001502(IF:9.933)
[5] Liu ZZ, Hong CG, Hu WB, et al. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy. 2021;17(10):2766-2782. doi:10.1080/15548627.2020.1839286(IF:9.770)
[6] Yang L, He X, Jing G, et al. Layered Double Hydroxide Nanoparticles with Osteogenic Effects as miRNA Carriers to Synergistically Promote Osteogenesis of MSCs. ACS Appl Mater Interfaces. 2021;13(41):48386-48402. doi:10.1021/acsami.1c14382(IF:9.229)
[7] Xin T, Mao J, Liu L, et al. Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum. ACS Appl Mater Interfaces. 2020;12(6):6840-6851. doi:10.1021/acsami.9b18496(IF:8.758)
[8] Hu Y, Zhang Y, Ni CY, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics. 2020;10(5):2293-2308. Published 2020 Jan 16. doi:10.7150/thno.39238(IF:8.579)
[9] Shen X, Zhang Y, Gu Y, et al. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials. 2016;106:205-216. doi:10.1016/j.biomaterials.2016.08.023(IF:8.387)
[10] Luo H, Gu R, Ouyang H, et al. Cadmium exposure induces osteoporosis through cellular senescence, associated with activation of NF-κB pathway and mitochondrial dysfunction. Environ Pollut. 2021;290:118043. doi:10.1016/j.envpol.2021.118043(IF:8.071)
[11] Zhang Y, Li Z, Wang Z, et al. Mechanically enhanced composite hydrogel scaffold for in situ bone repairs [published online ahead of print, 2022 Feb 7]. Mater Sci Eng C Mater Biol Appl. 2022;112700. doi:10.1016/j.msec.2022.112700(IF:7.328)
[12] Wang L, Fu H, Wang W, et al. Notoginsenoside R1 functionalized gelatin hydrogels to promote reparative dentinogenesis. Acta Biomater. 2021;122:160-171. doi:10.1016/j.actbio.2020.12.031(IF:7.242)
[13] Huang Z, Feng J, Feng X, et al. Loss of signal transducer and activator of transcription 3 impaired the osteogenesis of mesenchymal progenitor cells in vivo and in vitro. Cell Biosci. 2021;11(1):172. Published 2021 Sep 8. doi:10.1186/s13578-021-00685-3(IF:7.133)
[14] Gao Y, Gao J, Mu G, et al. Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide self-assembly. Acta Pharm Sin B. 2020;10(12):2374-2383. doi:10.1016/j.apsb.2020.07.022(IF:7.097)
[15] Li Y, Jiang X, Li L, et al. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication. 2018;10(4):044101. Published 2018 Jul 12. doi:10.1088/1758-5090/aacfc3(IF:6.838)
[16] Zhao S, Zhang C, Xu J, et al. Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Res Ther. 2022;13(1):169. Published 2022 Apr 27. doi:10.1186/s13287-022-02846-8(IF:6.832)
[17] Huang D, Li R, Ren J, Luo H, Wang W, Zhou C. Temporal induction of Lhx8 by optogenetic control system for efficient bone regeneration. Stem Cell Res Ther. 2021;12(1):339. Published 2021 Jun 10. doi:10.1186/s13287-021-02412-8(IF:6.832)
[18] Gu W, Wang L, Gu R, et al. Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance. J Cell Physiol. 2021;236(12):8208-8225. doi:10.1002/jcp.30491(IF:6.384)
[19] Wei B, Wang W, Liu X, et al. Gelatin methacrylate hydrogel scaffold carrying resveratrol-loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration. Regen Biomater. 2021;8(5):rbab044. Published 2021 Jul 30. doi:10.1093/rb/rbab044(IF:6.353)
[20] Wang SH, Hao J, Zhang C, et al. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2 [published online ahead of print, 2022 Apr 1]. Sci China Life Sci. 2022;10.1007/s11427-021-2076-x. doi:10.1007/s11427-021-2076-x(IF:6.038)
[21] Chen Z, Zheng J, Hong H, et al. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. J Cell Physiol. 2020;235(11):8507-8519. doi:10.1002/jcp.29695(IF:5.546)
[22] Xue N, Qi L, Zhang G, Zhang Y. miRNA-125b Regulates Osteogenic Differentiation of Periodontal Ligament Cells Through NKIRAS2/NF-κB Pathway. Cell Physiol Biochem. 2018;48(4):1771-1781. doi:10.1159/000492350(IF:5.500)
[23] Wang C, Hao K, Dong L, et al. The MuvB complex safeguards embryonic stem cell identity through regulation of the cell cycle machinery. J Biol Chem. 2022;298(3):101701. doi:10.1016/j.jbc.2022.101701(IF:5.157)
[24] Sun J , Zhang Y , Li B , Gu Y , Chen L . Controlled release of BMP-2 from a collagen-mimetic peptide-modified silk fibroin-nanohydroxyapatite scaffold for bone regeneration. J Mater Chem B. 2017;5(44):8770-8779. doi:10.1039/c7tb02043k(IF:4.543)
[25] Tao C , Zhang Y , Li B , Chen L . Hierarchical micro/submicrometer-scale structured scaffolds prepared via coaxial electrospinning for bone regeneration. J Mater Chem B. 2017;5(46):9219-9228. doi:10.1039/c7tb02044a(IF:4.543)
[26] Liu W, Wang H, Liu C, et al. RhBMP-2 immobilized on poly(phthalazinone ether nitrile ketone) via chemical and physical modification for promoting in vitro osteogenic differentiation. Colloids Surf B Biointerfaces. 2020;194:111173. doi:10.1016/j.colsurfb.2020.111173(IF:4.389)
[27] Yu L, Qu H, Yu Y, Li W, Zhao Y, Qiu G. LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells. J Cell Mol Med. 2018;22(12):6134-6147. doi:10.1111/jcmm.13892(IF:4.302)
[28] Yan Y, Zhao W, Huang Y, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276. Published 2017 Apr 10. doi:10.1038/srep46276(IF:4.259)
[29] Liu M, Zhu Y, Xing F, et al. The polycomb group protein PCGF6 mediates germline gene silencing by recruiting histone-modifying proteins to target gene promoters. J Biol Chem. 2020;295(28):9712-9724. doi:10.1074/jbc.RA119.012121(IF:4.238)
[30] Zhang Y, Gu X, Li D, Cai L, Xu Q. METTL3 Regulates Osteoblast Differentiation and Inflammatory Response via Smad Signaling and MAPK Signaling. Int J Mol Sci. 2019;21(1):199. Published 2019 Dec 27. doi:10.3390/ijms21010199(IF:4.183)
[31] Xiang C, Zhu Y, Xu M, Zhang D. Fasudil Ameliorates Osteoporosis Following Myocardial Infarction by Regulating Cardiac Calcitonin Secretion [published online ahead of print, 2022 May 12]. J Cardiovasc Transl Res. 2022;10.1007/s12265-022-10271-8. doi:10.1007/s12265-022-10271-8(IF:4.132)
[32] Zhao W, Liu M, Ji H, et al. The polycomb group protein Yaf2 regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner. J Biol Chem. 2018;293(33):12793-12804. doi:10.1074/jbc.RA118.003299(IF:4.011)
[33] Wang T, Yang X, Qi X, Jiang C. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. J Transl Med. 2015;13:152. Published 2015 May 8. doi:10.1186/s12967-015-0499-8(IF:3.930)
[34] Hu J, Zhu Y, Tong H, Shen X, Chen L, Ran J. A detailed study of homogeneous agarose/hydroxyapatite nanocomposites for load-bearing bone tissue. Int J Biol Macromol. 2016;82:134-143. doi:10.1016/j.ijbiomac.2015.09.077(IF:2.858)
[35] Liu C, Wang J, Gao C, et al. Enhanced osteoinductivity and corrosion resistance of dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn orthopedic implants: An in vitro and in vivo study. PLoS One. 2020;15(1):e0228247. Published 2020 Jan 30. doi:10.1371/journal.pone.0228247(IF:2.740)
[36] Lv H, Yang H, Wang Y. Effects of miR-103 by negatively regulating SATB2 on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. PLoS One. 2020;15(5):e0232695. Published 2020 May 7. doi:10.1371/journal.pone.0232695(IF:2.740)
[37] Chen X, Liu Y, Meng B, Wu D, Wu Y, Cao Y. Interleukin-20 inhibits the osteogenic differentiation of MC3T3-E1 cells via the GSK3β/β-catenin signalling pathway. Arch Oral Biol. 2021;125:105111. doi:10.1016/j.archoralbio.2021.105111(IF:2.635)
[38] Ding C, Fu S, Chen X, Chen C, Wang H, Zhong L. Epigallocatechin gallate affects the proliferation of human alveolar osteoblasts and periodontal ligament cells, as well as promoting cell differentiation by regulating PI3K/Akt signaling pathway. Odontology. 2021;109(3):729-740. doi:10.1007/s10266-021-00597-1(IF:2.634)
[39] Wang YJ, Zhang HQ, Han HL, Zou YY, Gao QL, Yang GT. Taxifolin enhances osteogenic differentiation of human bone marrow mesenchymal stem cells partially via NF-κB pathway. Biochem Biophys Res Commun. 2017;490(1):36-43. doi:10.1016/j.bbrc.2017.06.002(IF:2.466)
[40] Huang L, Li Q. Notoginsenoside R1 promotes differentiation of human alveolar osteoblasts in inflammatory microenvironment through inhibiting NF‑κB pathway and activating Wnt/β‑catenin pathway. Mol Med Rep. 2020;22(6):4754-4762. doi:10.3892/mmr.2020.11537(IF:2.100)
[41] Xiao Q, Zheng Y, Liu J, Wang S, Feng B. Enzyme-antibody dual-film modified gold nanoparticle probe for ultrasensitive detection of alpha fetoprotein. Biologicals. 2017;47:46-51. doi:10.1016/j.biologicals.2017.02.008(IF:1.603)