IF46.297!四川大学邵振华团队揭示C5a-C5aR1相互作用

补体系统是对感染性病原体的先天免疫反应的重要组成部分。外来物质的补体激活导致促炎因子的产生,其可以与先天性和适应性免疫系统相互作用。补体片段C5a是其重要的效应成分之一,通过激活C5a受体1(C5aR1)和相关下游G蛋白和β阻滞素信号通路发挥多种生理功能。2023年2月17日,四川大学邵振华团队《Cell Research》期刊发表了题为“Mechanism of activation and biased signaling in complement receptor C5aR1”的研究论文(IF=46.297)。该研究揭示了C5a-C5aR1相互作用,为C5aR1的配体识别、偏置信号调节、激活和C5aR1的Gi蛋白偶联提供了深入的机制研究,这可能有助于未来治疗药物的设计。

研究团队选择了翌圣生物的转染试剂PEI40000(40816ES)用于相关研究:

目前转染试剂系列的产品已经荣登《Nature》《Cell》《Science》等多个顶级期刊,获得科研大牛们认可!

翌圣转染试剂荣登《Nature Biotechnology》

翌圣明星CP--转染试剂与PCR产品又登《Cell》期刊
翌圣明星CP——转染试剂与反转定量产品登Science

 

研究团队亦选择了翌圣生物的D-荧光素钾盐(40902ES01)和Coelenterazine h 腔肠素h(40906ES02)用于相关研究:

 

以下仅展示转染试剂部分论文:

向上滑动查看更多

[1] Chai Q, Yu S, Zhong Y, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science. 2022;378(6616):eabq0132.(IF:63.714)中国科学院微生物研究所刘翠华团队与北京师范大学邱小波团队

[2] Liu R, Yang J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022 Jan 3. (IF:55)华东理工大学生物工程学院杨弋团队

[3] Luo J, Yang Q, Zhang X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022;185(6)(IF:41.582)西湖大学生命科学学院陶亮团队

[4] Xie F, Su P, et al. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv Mater. 2021 Oct 19. (IF:30.849)苏州大学生物医学研究院周芳芳团队

[5] Zhou J, Chen P, et al. Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition. Mol Ther. 2022 Jan 5.(IF:11.454)武汉大学生命科学学院殷雷团队

[6] Chen S, Cao X, et al. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022 Jan 24.(IF:16.808)中国科学院北京生命科学研究院赵方庆团队

[7] Gu C, Wang Y, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022 Jan 6.(11.161)南京中医药大学杨烨顾春艳团队

[8] Zhang Y, Yu X, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022 Feb.(11.492)南京中医药大学杨烨顾春艳团队

[9] Qin J, Cai Y, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun. 2022 Jan 13.(14.9)四川大学生物治疗国家重点实验室邵振华团队

[10] Tang X, Deng Z, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022 Mar 8.(11.161)南京中医药大学杨烨顾春艳团队和浙江大学生命科学研究院张龙团队

[11] Liang Y, Lu Q, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021 Sep 7.(IF:16.9)复旦大学生物医学研究院于文强团队

[12] Fan Y, Wang J, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021 Feb 2.(IF:27.403)南京医科大学附属逸夫医院苏东明团队

[13] Dai L, Dai Y, et al. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Mol Cell. 2021 Jul 1.(IF:17.97)浙江大学生命科学研究院黄俊团队和中科院生物物理所周政团队

[14] Zhang K, Wang A, et al. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron. 2021 Jun 16.(IF:17.17)中国科学院生物与化学交叉研究中心王文元团队

[15] Li T, Chen X, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021 Jan 27.(IF:14.92)华东理工大学生物工程学院杨弋团队

[16] Pan Y, He X, et al. Neuronal activity recruits the CRTC1/CREB axis to drive transcription-dependent autophagy for maintaining late-phase LTD. Cell Rep. 2021 Jul 20.(IF:9.420)浙江大学脑科学与脑医学学院马欢团队

[17] Liu H, Xing R, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021 Jun 12.(IF:8.463)厦门大学生命科学学院陈颖团队

[18] Yan F, Huang C, et al. Threonine ADP-Ribosylation of Ubiquitin by a Bacterial Effector Family Blocks Host Ubiquitination. Mol Cell. 2020 May 21.(IF:17.97)浙江大学生命科学研究院朱永群团队

[19] Luo Q, Wu X, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020 Jan 7.(IF:9.42)中国医学科学院分子肿瘤学国家重点实验室刘芝华团队

[20] Sun X, Peng X, et al. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020 Jun 12.(IF:14.911)中国科学院水生生物研究所孙玉华团队

[21] Yang X, Wang H, et al. Rewiring ERBB3 and ERK signaling confers resistance to FGFR1 inhibition in gastrointestinal cancer harbored an ERBB3-E928G mutation. Protein Cell. 2020 Dec.(IF:14.872)浙江大学医学院/转化医学研究院闵军霞团队

[22] Zou Y, Wang A, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018 Oct.(IF:13.490)华东理工大学生物工程学院杨弋、赵玉政团队

[23] Zhang K, Zhao X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018 Sep 12.(IF:8.09)南开大学医学院李宗金团队

[24] Hao H, Hu S, et al. Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction: Implications for Cardiovascular Drug Discovery. Circulation. 2017 Mar 28.(IF:29.69)中国医学科学院/北京协和医学院阜外医院王淼团队

 

 

 

以下展示D-荧光素钾盐(货号:40902)部分论文:

 

向上滑动查看更多

[1] Gu Y, Wang Y, He L, et al. Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer. 2021;20(1):132. Published 2021 Oct 14. doi:10.1186/s12943-021-01435-2(IF:27.401)

[2] Yuan Y, Jia G, Wu C, et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263-1274. doi:10.1038/s41422-021-00566-x(IF:25.617)

[3] Huang K, Liang Q, Zhou Y, et al. A Novel Allosteric Inhibitor of Phosphoglycerate Mutase 1 Suppresses Growth and Metastasis of Non-Small-Cell Lung Cancer [published correction appears in Cell Metab. 2021 Jan 5;33(1):223]. Cell Metab. 2019;30(6):1107-1119.e8. doi:10.1016/j.cmet.2019.09.014(IF:22.415)

[4] Wan S, Liu S, Sun M, et al. Spatial- and Valence-Matched Neutralizing DNA Nanostructure Blocks Wild-Type SARS-CoV-2 and Omicron Variant Infection. ACS Nano. 2022;16(9):15310-15317. doi:10.1021/acsnano.2c06803(IF:18.027)

[5] Yang B, Kong J, Fang X. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat Commun. 2022;13(1):3999. Published 2022 Jul 9. doi:10.1038/s41467-022-31740-3(IF:17.694)

[6] Bian S, Dong H, Zhao L, et al. Antihypertension Nanoblockers Increase Intratumoral Perfusion of Sequential Cytotoxic Nanoparticles to Enhance Chemotherapy Efficacy against Pancreatic Cancer [published online ahead of print, 2022 Aug 26]. Adv Sci (Weinh). 2022;e2201931. doi:10.1002/advs.202201931(IF:17.521)

[7] Jiang H, Bian W, Sui Y, et al. FBXO42 facilitates Notch signaling activation and global chromatin relaxation by promoting K63-linked polyubiquitination of RBPJ. Sci Adv. 2022;8(38):eabq4831. doi:10.1126/sciadv.abq4831(IF:14.957)

[8] Dong X, Cheng R, Zhu S, et al. A Heterojunction Structured WO2.9-WSe2 Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose. ACS Nano. 2020;14(5):5400-5416. doi:10.1021/acsnano.9b08962(IF:14.588)

[9] Gu J, Sun Y, Song J, et al. Irradiation induces DJ-1 secretion from esophageal squamous cell carcinoma cells to accelerate metastasis of bystander cells via a TGF-β1 positive feedback loop. J Exp Clin Cancer Res. 2022;41(1):259. Published 2022 Aug 26. doi:10.1186/s13046-022-02471-6(IF:12.658)

[10] Zheng DW, Gao F, Cheng Q, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11(1):1985. Published 2020 Apr 24. doi:10.1038/s41467-020-15927-0(IF:12.121)

[11] Hu J, Su H, Cao H, et al. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell. 2022;34(7):2688-2707. doi:10.1093/plcell/koac107(IF:11.277)

[12] Qi P, Huang M, Hu X, et al. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell. 2022;34(5):1666-1683. doi:10.1093/plcell/koac015(IF:11.277)

[13] Huang X, Qiu M, Wang T, et al. Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy. J Nanobiotechnology. 2022;20(1):93. Published 2022 Feb 22. doi:10.1186/s12951-022-01300-4(IF:10.435)

[14] Tang Y, Lin S, Yin S, et al. In situ gas foaming based on magnesium particle degradation: A novel approach to fabricate injectable macroporous hydrogels. Biomaterials. 2020;232:119727. doi:10.1016/j.biomaterials.2019.119727(IF:10.273)

[15] Zhang X, Zheng S, Hu C, et al. Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair. Oncogene. 2022;41(16):2372-2389.

 

 

 

以下展示Coelenterazine h 腔肠素h(货号:40906)部分论文:

 

向上滑动查看更多

[1] Lin S, Han S, Cai X, et al. Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature. 2021;594(7864):583-588. doi:10.1038/s41586-021-03495-2(IF:49.962)

[2] Ma S, Chen Y, Dai A, et al. Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor. Cell Res. 2021;31(10):1061-1071. doi:10.1038/s41422-021-00557-y(IF:25.617)

[3] Zhang H, Chen LN, Yang D, et al. Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Res. 2021;31(11):1163-1175. doi:10.1038/s41422-021-00552-3(IF:25.617)

[4] Zhai X, Mao C, Shen Q, et al. Molecular insights into the distinct signaling duration for the peptide-induced PTH1R activation. Nat Commun. 2022;13(1):6276. Published 2022 Oct 21. doi:10.1038/s41467-022-34009-x(IF:17.694)

[5] Shao Z, Shen Q, Yao B, et al. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol. 2022;18(3):264-271. doi:10.1038/s41589-021-00918-z(IF:15.040)

[6] Liu Q, Yang D, Zhuang Y, et al. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nat Chem Biol. 2021;17(12):1238-1244. doi:10.1038/s41589-021-00841-3(IF:15.040)

[7] Zhao F, Zhou Q, Cong Z, et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun. 2022;13(1):1057. Published 2022 Feb 25. doi:10.1038/s41467-022-28683-0(IF:14.919)

[8] Zhou F, Zhang H, Cong Z, et al. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun. 2020;11(1):5205. Published 2020 Oct 15. doi:10.1038/s41467-020-18945-0(IF:12.121)

[9] Shao L, Chen Y, Zhang S, et al. Modulating effects of RAMPs on signaling profiles of the glucagon receptor family. Acta Pharm Sin B. 2022;12(2):637-650. doi:10.1016/j.apsb.2021.07.028(IF:11.614)

[10] Shao Z, Tan Y, Shen Q, et al. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov. 2022;8(1):44. Published 2022 May 15. doi:10.1038/s41421-022-00403-4(IF:10.849)

[11] Su L, Sun Z, Qi F, et al. GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles underlies distinct gene therapy effect in ovarian cancer. J Nanobiotechnology. 2022;20(1):340. Published 2022 Jul 20. doi:10.1186/s12951-022-01530-6(IF:9.429)

[12] Zhao F, Zhang C, Zhou Q, et al. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. Elife. 2021;10:e68719. Published 2021 Jul 13. doi:10.7554/eLife.68719(IF:8.146)

[13] Wang YZ, Yang DH, Wang MW. Signaling profiles in HEK 293T cells co-expressing GLP-1 and GIP receptors. Acta Pharmacol Sin. 2022;43(6):1453-1460. doi:10.1038/s41401-021-00758-6(IF:6.150)

[14] Wang J, Yang D, Cheng X, et al. Allosteric Modulators Enhancing GLP-1 Binding to GLP-1R via a Transmembrane Site. ACS Chem Biol. 2021;16(11):2444-2452. doi:10.1021/acschembio.1c00552(IF:5.100)

[15] Lin GY, Lin L, Cai XQ, et al. High-throughput screening campaign identifies a small molecule agonist of the relaxin family peptide receptor 4. Acta Pharmacol Sin. 2020;41(10):1328-1336. doi:10.1038/s41401-020-0390-x(IF:5.064)

[16] Yuliantie E, Darbalaei S, Dai A, et al. Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem Pharmacol. 2020;177:114001. doi:10.1016/j.bcp.2020.114001(IF:4.960)

[17] Darbalaei S, Yuliantie E, Dai A, et al. Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochem Pharmacol. 2020;180:114150. doi:10.1016/j.bcp.2020.114150(IF:4.960)

[18] Sun L, Hao Y, Wang Z, Zeng Y. Constructing TC-1-GLUC-LMP2 Model Tumor Cells to Evaluate the Anti-Tumor Effects of LMP2-Related Vaccines. Viruses. 2018;10(4):145. Published 2018 Mar 23. doi:10.3390/v10040145(IF:3.761)

 

 

 

 

翌圣生物还提供试用装申请,请扫描下方二维码进入翌圣商城申请测试装:

 

Hieff Trans®脂质体核酸转染试剂[40802ES01]

 

 

 

Hieff Trans® Universal Transfection Reagent HieffTrans®用型转染试剂[40808ES01]

 

 

 

Polyethylenimine Linear(PEI) MW40000(rapid lysis)线性PEI转染试剂(速溶型)[40816ES01]

 

 

 

 

翌圣生物转染试剂产品目录
 

 

应用场景

名称

货号

细胞类型:贴壁/悬浮
核酸类型:DNA、siRNA

Hieff Trans® 脂质体核酸转染试剂

40802ES

细胞类型:贴壁/悬浮核酸类型:DNA

磷酸钙法细胞转染试剂

40803ES

用途:病毒感染、DNA转染

聚凝胺(10 mg/ml)

40804ES

细胞类型:悬浮核酸类型:DNAsiRNA

Hieff Trans® 悬浮细胞专用脂质体核酸转染试剂

40805ES

细胞类型:贴壁/悬浮核酸类型:siRNAmiRNA

Hieff Trans® siRNA/miRNA体外转染试剂

40806ES

细胞类型:贴壁/悬浮核酸类型:DNAsiRNAmiRNA

Hieff Trans® 通用型转染试剂

40808ES

细胞类型:贴壁/悬浮核酸类型:mRNA

Hieff Trans® mRNA转染试剂

40809ES

细胞类型:贴壁/悬浮核酸类型:DNA

PEI转染试剂MW25000

40815ES

细胞类型:贴壁/悬浮核酸类型:DNA

线性PEI转染试剂(速溶型)MW40000

40816ES

细胞类型:293核酸类型:DNA

Hieff Trans® 293细胞转染试剂

40817ES

细胞类型:293核酸类型:DNA用途:AAV/LV载体研发与工艺开发

Hieff Trans® PEI转染试剂

40820ES

细胞类型:293
核酸类型:DNA
用途:AAV/LV载体大规模生产

Hieff Trans® PEI Transfection Reagent-GMP

40821ES

点击产品名称查看详情

 

 

翌圣生物活体成像产品目录
 

 

应用场景

产品名称

货号

活体成像(较易溶于水)

D-Luciferin, Sodium Salt D 荧光素钠盐

40901ES01/02/03/08

活体成像应用最普遍(易溶于水)

D-Luciferin, Potassium Salt D 荧光素钾盐

40902ES01/02/03/08

活体成像(不易溶于水)

D-Luciferin Firefly, Free Acid D 萤火虫荧光素,游离酸

40903ES01/02/03

海肾荧光素酶底物,Gaussia荧光素酶底物

Coelenterazine Native 天然腔肠素

40904ES02/03/08

BRET研究首选的腔肠素类底物

Coelenterazine 400a 腔肠素400a

40905ES02/03

体外生物发光,钙离子浓度检测(细胞水平验证)

Coelenterazine h 腔肠素h

40906ES02/03/08

体内生物发光,钙离子浓度检测(动物体内活体成像)

Ready To Use Coelenterazine h 即用型腔肠素h

40907ES10

高灵敏度钙离子检测

Coelenterazine f 腔肠素f

40908ES02/03

点击产品名称查看详情

 

400-6111-883