全球哮喘患者已超3亿,其中严重嗜酸性粒细胞性哮喘(severe eosinophilic asthma, SEA)以嗜酸性粒细胞炎症为主要特征,是难治性哮喘的主要表型。并且嗜酸性粒细胞与哮喘急性发作频率的增加以及肺功能下降密切相关。因此,靶向嗜酸性粒细胞是治疗SEA的潜在策略。
2022年8月16日,浙江大学医学院应颂敏、沈华浩教授团队在《Cell Discovery》期刊(IF:38.079)在线发表了题为《Treatment of allergic eosinophilic asthma through engineered IL-5-anchored chimeric antigen receptor T cells》的研究论文。研究发现IL-5-anchored CCAR-T (简称CCAR-T)细胞能够有效抑制气道中炎症因子的分泌和炎症细胞的浸润,具有明显的缓解作用。揭示了CCAR-T细胞在体内外对嗜酸性粒细胞的靶向杀伤作用以及对过敏性气道炎症的保护作用,为过敏性哮喘的治疗研究提供了潜在新的策略。
在该研究中,研究团队选择了翌圣的转染试剂Polybrene(聚凝胺)用于逆转录病毒介导的的T细胞基因转染研究:
目前翌圣转染试剂系列的产品已经荣登《Nature》、《Cell》等多个顶级期刊,获得科研大牛们的认可!
IF55分!翌圣转染试剂助力高分文章
翌圣转染试剂助力发文254篇,累积IF达2000+
以下仅展示部分论文:
[1] Liu R, Yang J, Yao J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022;40(5):779-786. doi:10.1038/s41587-021-01112-1(IF=68.164)
[2] Luo J, Yang Q, Zhang X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022;185(6):980-994.e15. doi:10.1016/j.cell.2022.02.010 (IF=66.85)
[3] Zhou J, Chen P, Wang H, et al. Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition. Mol Ther. 2022;30(1):244-255. doi:10.1016/j.ymthe. 2021.10.010 (IF=12.910)
[4] Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022;9(8):e2103817. doi:10.1002/advs.202103817 (IF=17.694)
[5] Zhang Y, Yu X, Sun R, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022;12(2):e684. doi:10.1002/ctm2.684 (IF=11.492)
[6] Qin J, Cai Y, Xu Z, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun. 2022;13(1):300. Published 2022 Jan 13. doi:10.1038/s41467-022-27975-9 (IF=17.681)
[7] Tang X, Deng Z, Ding P, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85. Published 2022 Mar 8. doi:10.1186/s13046-022-02276-7(IF=12.658)
[8] Yang X, Wang X, Xu Z, et al. Molecular mechanism of allosteric modulation for the cannabinoid receptor CB1 [published online ahead of print, 2022 May 30]. Nat Chem Biol. 2022;10.1038/s41589-022-01038-y. doi:10.1038/s41589-022-01038-y (IF=16.174)
[9] Xie F, Su P, Pan T, et al. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv Mater. 2021;33(49):e2103471. doi:10.1002/adma. 202103471 (IF=30.849)
[10] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626 (IF=16.9)
[11] Fan Y, Wang J, Jin W, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021;20(1):25. Published 2021 Feb 2. doi:10.1186/s12943-021-01321-x (IF=27.403)
[12] Dai L, Dai Y, Han J, et al. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Mol Cell. 2021;81(13):2765-2777.e6. doi:10.1016/j.molcel.2021.05.010 (IF=17.97)
[13] Zhang K, Wang A, Zhong K, et al. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron. 2021;109(12):1949-1962.e6. doi:10.1016/j.neuron.2021.04.023 (IF=17.17)
[14] Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572. doi:10.1093/nar/gkab626 (IF=16.9)
[15] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1 (IF=14.92)
[17] Gu C, Wang Y, Zhang L, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):11. Published 2022 Jan 6. doi:10.1186/s13046-021-02220-1 (IF=11.161)
[18] Zhou Y, Li D, Luo J, et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor mediate the cellular entry of Clostridium novyi alpha-toxin. Cell Res. 2021;31(8):935-938. doi:10.1038/s41422-021-00510-z (IF=25.617)
[19] Luo Q, Wu X, Zhao P, et al. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh). 2021;8(8):2002874. Published 2021 Feb 8. doi:10.1002/advs.202002874 (IF=15.84)
[20] Yan F, Huang C, Wang X, et al. Threonine ADP-Ribosylation of Ubiquitin by a Bacterial Effector Family Blocks Host Ubiquitination. Mol Cell. 2020;78(4):641-652.e9. doi:10.1016/j.molcel.2020.03.016 (IF=17.97)
[21] Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11(1):2984. Published 2020 Jun 12. doi:10.1038/s41467-020-16799-0 (IF=14.911)
[22] Yang X, Wang H, Xie E, et al. Rewiring ERBB3 and ERK signaling confers resistance to FGFR1 inhibition in gastrointestinal cancer harbored an ERBB3-E928G mutation. Protein Cell. 2020;11(12):915-920. doi:10.1007/s13238-020-00749-z (IF=14.872)
[23] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018;13(10):2362-2386. doi:10.1038/s41596-018-0042-5 (IF=13.490)
[24] Hao H, Hu S, Chen H, et al. Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction: Implications for Cardiovascular Drug Discovery. Circulation. 2017;135(13):1253-1264. doi:10.1161/CIRCULATIONAHA.116.023027 (IF=18.881)
为回馈大家对翌圣生物转染试剂的厚爱,正在进行包括转染试剂在内的细胞类产品的促销活动,请直接与当地销售联系获取最新促销信息。
翌圣生物转染试剂产品目录
应用场景 |
名称 |
货号 |
规格 |
细胞类型:贴壁/悬浮 核酸类型:DNA、siRNA |
40802ES02 |
0.5 mL |
|
40802ES03 |
1.0 mL |
||
40802ES08 |
5×1 mL |
||
细胞类型:贴壁/悬浮 |
40803ES70 |
200 T |
|
用途:病毒感染、DNA转染 |
40804ES76 |
500 μL |
|
40804ES86 |
5×500 μL |
||
细胞类型:悬浮 |
40805ES02 |
0.5 mL |
|
40805ES03 |
1.0 mL |
||
40805ES08 |
5×1 mL |
||
细胞类型:贴壁/悬浮 |
40806ES01 |
0.1 mL |
|
40806ES02 |
0.5 mL |
||
40806ES03 |
1.0 mL |
||
细胞类型:贴壁/悬浮 |
40808ES02 |
0.5 mL |
|
40808ES03 |
1 mL |
||
40808ES08 |
5×1 mL |
||
细胞类型:贴壁/悬浮 |
40809ES01 |
0.1 mL |
|
40809ES03 |
1 mL |
||
细胞类型:贴壁/悬浮 |
40815ES03 |
1 g |
|
40815ES08 |
5×1 g |
||
细胞类型:贴壁/悬浮 |
40816ES02 |
100 mg |
|
40816ES03 |
1 g |
||
细胞类型:293 |
40820ES04 |
1.5 mL |
|
40820ES10 |
10 mL |
||
40820ES60 |
100 mL |
||
细胞类型:293 核酸类型:DNA 用途:AAV/LV载体大规模生产 |
40821ES10 |
10 mL |
|
40821ES60 |
100 mL |
||
40821ES80 |
1 L |
点击产品名称查看详情