首页/ 产品解读 / 新闻详情

CCK-8,科研实验中最常见的细胞增殖检测方法

CCK-8法目前是生命科学研究中检测细胞增殖和毒性应用最广泛的方法之一,截至2022年,在Pubmed数据库中利用CCK-8试剂发表的文献数逐年递增。
图片
 
 

实验原理

 图片

细胞增殖的检测方法众多,CCK-8是细胞增殖检测中的代谢活性检测,属于MTT的升级产品,操作较MTT更便捷(不需要DMSO溶解)。

 

工作原理:CCK-8可以被细胞线粒体内的脱氢酶还原生成高度水溶性的橙黄色的甲臜产物。颜色的深浅与细胞的增殖成正比,与细胞毒性成反比。使用酶标仪在450nm波长处测定OD值,间接反映活细胞数量。

 

 

 

实验流程和操作步骤

图片
 
 

01

实验分组(每组建议3-6个复孔)

实验组:药物或者基因过表达等处理细胞+CCK-8试剂(见下表黄色列)
对照组:不加药物等的对照细胞+CCK-8试剂(见下表绿色列)
空白组:不加细胞的空白培养基+CCK-8试剂(见下表蓝色列)
PBS孔:灰色,防止液体过度蒸发

 

排版参考:
图片

 

02

实验方案

1.种板细胞数:
 
细胞增殖实验:每孔加入约1000-2000个细胞,100μl培养基,每0,24,48,72h检测细胞的OD值。

 

细胞毒性实验:每孔加入约5000~10000个细胞,100μl培养基(具体每孔所用的细胞的数目,需根据细胞的大小,细胞增殖速度的快慢等决定)。孔板周围加100μL PBS防止过度蒸发。

 

2.检测方法
在对应的检测时间点,从培养箱取出细胞,每孔加入10μL的CCK-8试剂,避光反映1-4h(具体孵育时间根据细胞数决定,一般OD值在0.8-1.5时线性最佳),在酶标仪上450nm下检测OD值,检测前需震荡混匀。

 

注:换液和不换液均可。若检测完以后第二天还需要再一次检测,则全部吸出黄色反应液,再加入新鲜培养基培养细胞。

 

 

结果分析

我们得到的值是酶标仪读出的OD值,一般结果可用OD值呈现,也可采用处理后的细胞存活率呈现。细胞存活率% =(加药细胞OD-空白OD) /(对照细胞OD-空白OD)×100%,可用GraphPad软件作出相应图片。

 

文献示例一——计算细胞存活率

横坐标:细胞组别;纵坐标,细胞存活率(YEASEN货号:40203)
图片
 
图片参考文献:
Wei S, Zhao Q, Zheng K, et al. GFAT1-linked TAB1 glutamylation sustains p38 MAPK activation and promotes lung cancer cell survival under glucose starvation. Cell Discov. 2022;8(1):77. Published 2022 Aug 9. doi:10.1038/s41421-022-00423-0(IF:38.079)

 

文献示例二——直接展示细胞OD值

横坐标:细胞生长时间;纵坐标:OD值(YEASEN货号:40203)
图片

 

图片参考文献:
Han BY, Liu Z, Hu X, Ling H. HNRNPU promotes the progression of triple-negative breast cancer via RNA transcription and alternative splicing mechanisms. Cell Death Dis. 2022 Nov 8;13(11):940. doi: 10.1038/s41419-022-05376-6. (IF:5.9590)

 

产品推荐

 
产品名称 产品编号 规格
Cell Counting Kit (CCK-8) CCK-8试剂盒 40203ES60 100T
40203ES76 500T
40203ES80 1000T
40203ES88 3×1000T
40203ES92 10×1000T

 

引用YEASEN产品部分发表文献参考

滑动查看

[1] Sun L, Li P, Ju X, et al. In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell. 2021;184(7):1865-1883.e20. doi:10.1016/j.cell.2021.02.008(IF:41.584)

[2] Wei S, Zhao Q, Zheng K, et al. GFAT1-linked TAB1 glutamylation sustains p38 MAPK activation and promotes lung cancer cell survival under glucose starvation. Cell Discov. 2022;8(1):77. Published 2022 Aug 9. doi:10.1038/s41421-022-00423-0(IF:38.079)

[3] Chen X, Zhang D, Su N, et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat Biotechnol. 2019;37(11):1287-1293. doi:10.1038/s41587-019-0249-1(IF:31.864)

[4] Yang F, Xiao Y, Ding JH, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy [published online ahead of print, 2022 Oct 11]. Cell Metab. 2022;S1550-4131(22)00411-9. doi:10.1016/j.cmet.2022.09.021(IF:31.373)

[5] Rong QX, Wang F, Guo ZX, et al. GM-CSF mediates immune evasion via upregulation of PD-L1 expression in extranodal natural killer/T cell lymphoma. Mol Cancer. 2021;20(1):80. Published 2021 May 29. doi:10.1186/s12943-021-01374-y(IF:27.401)

[6] Xia B, Shen X, He Y, et al. SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Res. 2021;31(8):847-860. doi:10.1038/s41422-021-00519-4(IF:25.617)

[7] Yang X, Zhao X, Zhu Y, et al. FBXO34 promotes latent HIV-1 activation by post-transcriptional modulation. Emerg Microbes Infect. 2022;11(1):2785-2799. doi:10.1080/22221751.2022.2140605(IF:19.568)

[8] Zhou Z, Zhang X, Lei X, et al. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal Transduct Target Ther. 2021;6(1):382. Published 2021 Nov 3. doi:10.1038/s41392-021-00800-3(IF:18.187)

[9] Li M, Hao B, Zhang M, et al. Melatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development. Signal Transduct Target Ther. 2021;6(1):330. Published 2021 Sep 1. doi:10.1038/s41392-021-00745-7(IF:18.187)

[10] Qi S, Zhu Y, Liu X, et al. WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy. Mol Cell. 2022;82(10):1850-1864.e7. doi:10.1016/j.molcel.2022.03.027(IF:17.970)

[11] Zhu J, Li X, Cai X, et al. Arginine monomethylation by PRMT7 controls MAVS-mediated antiviral innate immunity. Mol Cell. 2021;81(15):3171-3186.e8. doi:10.1016/j.molcel.2021.06.004(IF:17.970)

[12] Teng KX, Niu LY, Xie N, Yang QZ. Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical. Nat Commun. 2022;13(1):6179. Published 2022 Oct 19. doi:10.1038/s41467-022-33924-3(IF:17.694)

[13] Zhong J, Guo Y, Lu S, et al. Rational design of a sensitivity-enhanced tracer for discovering efficient APC-Asef inhibitors. Nat Commun. 2022;13(1):4961. Published 2022 Aug 24. doi:10.1038/s41467-022-32612-6(IF:17.694)

[14] Liu F, Wang X, Duan J, et al. A Temporal PROTAC Cocktail-Mediated Sequential Degradation of AURKA Abrogates Acute Myeloid Leukemia Stem Cells. Adv Sci (Weinh). 2022;9(22):e2104823. doi:10.1002/advs.202104823(IF:16.806)

[15] Ji C, Qiu M, Ruan H, et al. Transcriptome Analysis Revealed the Symbiosis Niche of 3D Scaffolds to Accelerate Bone Defect Healing. Adv Sci (Weinh). 2022;9(8):e2105194. doi:10.1002/advs.202105194(IF:16.806)

[16] Feng L, Dou C, Xia Y, et al. Neutrophil-like Cell-Membrane-Coated Nanozyme Therapy for Ischemic Brain Damage and Long-Term Neurological Functional Recovery. ACS Nano. 2021;15(2):2263-2280. doi:10.1021/acsnano.0c07973(IF:15.881)

[17] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)

[18] Jiang Z, He L, Yu X, et al. Antiangiogenesis Combined with Inhibition of the Hypoxia Pathway Facilitates Low-Dose, X-ray-Induced Photodynamic Therapy [published online ahead of print, 2021 Jun 25]. ACS Nano. 2021;10.1021/acsnano.1c01063. doi:10.1021/acsnano.1c01063(IF:15.881)

[19] Gong X, Li J, Xu X, et al. Microvesicle-inspired oxygen-delivering nanosystem potentiates radiotherapy-mediated modulation of tumor stroma and antitumor immunity. Biomaterials. 2022;290:121855. doi:10.1016/j.biomaterials.2022.121855(IF:15.304)

[20] Deng J, Xu W, Lei S, et al. Activated Natural Killer Cells-Dependent Dendritic Cells Recruitment and Maturation by Responsive Nanogels for Targeting Pancreatic Cancer Immunotherapy. Small. 2022;18(44):e2203114. doi:10.1002/smll.202203114(IF:15.153)

 

 

400-6111-883